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ABSTRACT
Heterogeneous systems, systems with multiple processors
tailored for specialized tasks, are challenging programming
environments. While it may be possible for domain ex-
perts to optimize a high performance application for a very
specific and well documented system, it may not perform
as well or even function on a different system. Developers
who have less experience with either the application domain
or the system architecture may devote a significant effort
to writing a program that merely functions correctly. We
believe that a comprehensive analysis and modeling frame-
work is necessary to ease application development and au-
tomate program optimization on heterogeneous platforms.

This paper reports on an empirical evaluation of 25 CUDA
applications on four GPUs and three CPUs, leveraging the
Ocelot dynamic compiler infrastructure which can execute
and instrument the same CUDA applications on either tar-
get. Using a combination of instrumentation and statisti-
cal analysis, we record 37 different metrics for each appli-
cation and use them to derive relationships between pro-
gram behavior and performance on heterogeneous proces-
sors. These relationships are then fed into a modeling frame-
work that attempts to predict the performance of similar
classes of applications on different processors. Most signifi-
cantly, this study identifies several non-intuitive relation-
ships between program characteristics and demonstrates
that it is possible to accurately model CUDA kernel perfor-
mance using only metrics that are available before a kernel
is executed.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Heterogeneous (hybrid)
systems; D.3.4 [Programming Languages]: Retargetable
compilers; D.2.4 [Software Engineering]: Statistical meth-
ods

General Terms
Performance, Design, Measurement
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1. INTRODUCTION
As programming models such as NVIDIA’s CUDA [17]

and the industry-wide standard OpenCL [8] gain wider ac-
ceptance, efficiently executing the expression of a data-parallel
application on parallel architectures with dissimilar perfor-
mance characteristics such as multi-core superscalar proces-
sors or massively parallel graphics processing units (GPUs)
becomes increasingly critical. While considerable efforts
have been spent optimizing and benchmarking applications
intended for processors with several cores, comparatively
less effort has been spent evaluating the characteristics and
performance of applications capable of executing efficiently
on both GPUs and CPUs.

As more applications are written from the ground up to
perform efficiently on systems with a diverse set of available
processors, choosing the architecture capable of executing
each kernel of the application most efficiently becomes more
important in maximizing overall throughput and power ef-
ficiency. At the time of this writing, we are not aware of
any study that correlates detailed application characteris-
tics with actual performance measured on real-world archi-
tectures.

Consequently, this paper makes the following contribu-
tions:

• We identify several PTX application characteristics
that indicate relative performance on GPUs and CPUs.

• We use a statistical data analysis methodology based
on principal component analysis to identify critical
program characteristics.

• We introduce a model for predicting relative perfor-
mance when the application is run on a CPU or a
GPU.

The analysis and models presented in this paper leverage
the Ocelot framework for instrumenting data-parallel ap-
plications and executing them on heterogeneous platforms.
The Ocelot framework [13] is an emulation and compila-
tion infrastructure that implements the CUDA Runtime
API and either (1) emulates executing kernels, (2) trans-
lates kernels to the CPU ISA, or (3) emits the kernel rep-
resentation to the CUDA driver for execution on attached
GPUs. Ocelot is uniquely leveraged to gather instruction
and memory traces from emulated kernels in unmodified
CUDA applications, analyze control and data dependencies,
and execute the kernel efficiently on both CUDA-capable
GPUs and multicore CPUs. Consequently, in addition to
enabling detailed and comparative workload characteriza-
tions, the infrastructures enables transparently portability
of PTX kernels across CPUs and NVIDIA GPUs.



2. RELATED WORK
Analytical GPU models. Hong et. al. [10] pro-

pose a predictive analytical performance model for GPUs.
The main components of their model are memory paral-
lelism among concurrent warps and computational paral-
lelism. By tuning their model to machine parameters, static
characteristics of applications, and regressions, their perfor-
mance model predicts kernel runtimes with errors of 13%
or less. Our approach, on the other hand, does not assume
particular principal components and instead attempts to
determine them based on measurable statistics that may
change substantially with the evolution of GPU and CPU
micro-architecture.

MCUDA. MCUDA [19] defines a high-level source-to-
source translator from CUDA to the C programming lan-
guage. Blocks delimited by synchronization points are iden-
tified in the CUDA source, and thread loops are placed
around them spilling live values. Like Ocelot, a software
runtime dispatches CTAs to host hardware threads and im-
plements support for texture sampling and special func-
tions. MCUDA, however, requires applications to be recom-
piled from source and is not flexible to alternative meth-
ods. Further, it is a source-to-source translation frame-
work which has its advantages, but cannot address the de-
tailed ISA level characterizations and insights supported by
Ocelot.

GPU-Simulators. Like Ocelot, Barra [4] and GPGPU-
Sim [1] provide micro-architecture simulation to CUDA pro-
grams. Similar to Ocelot, these simulators intercept GPU
kernel invocations and execute them instead on a functional
simulator. They are primarily concerned with reproducing
the executions of kernels on actual GPUs, and character-
istics derived from such simulations are influenced by it.
Results from Ocelot are decoupled from particular GPU im-
plementations excepting the memory efficiency metric and
provide insights into application behavior. Further, Ocelot
provides a high-performance execution path to multicore
CPUs and NVIDIA GPUs thereby offering opportunities to
speedup applications by selecting the appropriate execution
target.

PLANG / NVIDIA PTX to LLVM. NVIDIA has
presented internal work translating PTX to LLVM [9] at
the LLVM Developer’s Workshop. This largely matches
the aims of Ocelot to provide a high-performance execution
path for CUDA to multicore CPUs. However, details are
not public making comparisons difficult. Further, Ocelot
provides and exposes an integrated emulator enabling de-
tailed analysis via tool interfaces.

3. BACKGROUND

3.1 PTX
NVIDIA’s Parallel Thread eXecution (PTX) [16] is a vir-

tual instruction set architecture with explicit data-parallel
execution semantics that are well-suited to NVIDIA’s GPUs.
PTX is composed of a set of RISC-like instructions for
explicitly-typed arithmetic computations, loads and stores
to a set of address spaces, instructions for parallelism and
synchronization, and built-in variables. Functions imple-
mented in PTX, known as kernels are intended to be ex-
ecuted by a large grid of threads arranged hierarchically
into a grid of cooperative thread arrays (CTAs). The PTX
thread hierarchy is illustrated in Figure 1. CTAs in this grid
may be executed concurrently or serially with an unspeci-
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Figure 1: PTX thread hierarchy.

fied mapping to physical processors. Threads within a CTA
are assumed to be executing on a single processor and may
synchronize at programmer-inserted barriers within the ker-
nel. Data may be exchanged between the threads of a CTA
by reading and writing to a shared scratchpad memory or
by loading and storing to locations in global memory off
chip; in either case, a barrier synchronization must be used
to force all threads to complete their store operations before
loads to the same location may be issued or the outcome of
the resulting race condition is undefined.

The PTX execution model permits the serialized execu-
tion of CTAs to avoid an overwhelmingly large explosion
of state as, for example, a grid of thousands of CTAs are
launched each with hundreds of threads resulting in possi-
bly hundreds of megabytes of live state at any point in the
kernel if all CTAs were executed concurrently. Coarse-grain
synchronization among CTAs of a kernel is defined only at
the end of a kernel.

Applications that efficiently target this execution model
explicitly declare high levels of parallelism as well as local-
ized synchronization and communication domains. Conse-
quently, they may be efficiently scaled to architectures with
varying numbers of processors.

3.2 Ocelot Infrastructure
The Ocelot compiler infrastructure strives to decouple

CUDA applications from GPUs by wrapping CUDA Run-
time API [17], parsing kernels stored as bytecode within the
application into an internal representation, executing these
kernels on devices present, and maintaining a complete list
of CUDA memory allocations that store state on the GPU.
By decoupling a CUDA application from the CUDA driver,
Ocelot provides a framework for simulating GPUs, gath-
ering performance metrics, translating kernels to architec-
tures other than GPUs, instrumenting kernels, and opti-
mizing kernels for execution on the GPU.

Ocelot’s translation framework provides efficient execu-
tion of CUDA kernels on multi-core CPUs by first trans-
lating the kernel from PTX to the native instruction set of
the Low-Level Virtual Machine (LLVM) [14] infrastructure
then applying a series of transformations that implement
the PTX execution model discussed in Section 3.1 with con-
trol and data structures available to typical scalar micro-
processors. The complete translation process is beyond the
scope of this paper; we only include a brief description of



the process as it pertains to the analysis methodology used
in the following sections. A more detailed overview of the
translation process is covered in our prior work[6].

4. TRANSLATION

4.1 LLVM
The Low Level Virtual Machine (LLVM) [14] is a matur-

ing compiler infrastructure that maintains a strongly-typed
program representation of that program throughout its life-
time. Multiple back-end code generators exist to translate
LLVM IR to various popular instruction set architectures
including x86 and x86-64. LLVM’s IR itself includes explicit
load and store instructions, integer and floating-point arith-
metic, binary operators, and control flow operators. LLVM
includes optimization passes that apply transformations to
this intermediate form including well-known compiler opti-
mizations such as common subexpression elimination, dead
code removal, and constant propagation. By translating
from one intermediate form to LLVM’s IR and then lever-
aging LLVM’s existing optimization and code generation
components, a developer may construct a complete path to
native execution on popular CPU architectures.

In Figure 2, an example kernel expressed in CUDA is first
compiled by NVIDIA’s CUDA compiler (nvcc) producing a
PTX representation which is then translated by Ocelot’s
LLVM Translation framework yielding the kernel on the
right side of the figure. This is an LLVM representation of
the kernel that could be executed by one host thread for
each thread in the CTA and correctly execute the kernel.
Note the runtime support structure providing block and
thread ID.

4.2 Execution Model Translation
Compiling a PTX kernel for execution on multicore CPUs

requires first translating the kernel to the desired instruc-
tion set then transforming the kernel’s execution seman-
tics from PTX’s thread hierarchy to a single host thread.
Ocelot could conceivably execute a PTX kernel using the
LLVM translation by launching one kernel-level host thread
per thread in the CTA and relying on OS-level support for
barriers and multi-threading to provide concurrency and
context switching. This approach is similar to CUDA emu-
lation mode except the underlying kernel representation is
the same PTX representation that would be executed on
the GPU. However, CUDA programs perform efficiently on
GPUs when many light-weight threads are launched to hide
latencies in the memory structure.

The strategy adopted here to map the thousands of logi-
cal CUDA threads onto a few host threads is a compile-time
transformation that inserts procedures to perform light-
weight context switching at synchronization barriers within
the kernel, similar to thread fusion described in [19]. A
scheduler basic block is inserted at the entry point of the
kernel that selects branch targets depending on the cur-
rently selected thread and its progress through the kernel.
When a thread reaches a synchronization point, control
jumps back to the scheduler which stores live variables that
have been written, updates the resume point, increments
the thread ID, and jumps to the new current thread’s pre-
vious instruction. Live variables are loaded as needed and
execution continues.

This method does not require function calls or heavy-
weight context switches. Thread creation at the start of the
CTA incurs no incremental overhead other than the fixed

costs of allocating shared and local memory which each
worker thread completes once when a kernel is launched.
Context switches require spilling live state and an indirect
branch which is likely to be predicted correctly much of the
time.

Some CUDA programs are written in a manner that as-
sumes the warp size for the executing processor is at least
a particular value, typically 32 threads for current CUDA
GPU architectures. Whille this assumption is stronger than
what the execution model guarantees, existing architectures
execute such kernels correctly, and the additional clock cy-
cles needed to execute synchronization instructions may be
saved. The PTX emulator assumes the warp size is equal
to the number of threads in the CTA and executes each
instruction for as many threads as possible, so such appli-
cations work correctly without modification. The multicore
execution model translation technique described here as-
sumes warp size is equal to 1 thread, so applications must
be recompiled with synchronization points following those
statements expected to be executed simultaneously on ar-
chitectures with a larger warp size.

4.3 CTA Runtime Support
When an application launches a kernel, a multi-threaded

runtime layer launches as many worker threads as there are
hardware threads available in addition to a context data
structure per thread. This context consists of a block of
shared memory, a block of local memory used for register
spills, and special registers. Worker threads then iterate
over the blocks of the kernel grid and each executes block
as a CTA. The execution model permits any ordering of
CTAs and any mapping to concurrent worker threads.

PTX defines several instructions which require special
handling by the runtime. PTX compute capability 1.1 in-
troduces atomic global memory operators which implement
primitive transactional operations such as exchange, com-
pare and swap, add, increment, and max, to name a few.
Because global memory is inconsistent until a kernel ter-
minates, we faced several options for implementing atomic
accesses. The simplest option places a global lock around
global memory. GPUs typically provide hardware support
for texture sampling and filtering. PTX defines a texture
sampling instruction which samples a bound texture and
optionally performs interpolation depending on the GPU
driver state. As CPUs do not provide hardware support
for texture sampling, Ocelot performans nearest and bilin-
ear interpolation in softwar by translating PTX instruc-
tions into function calls which examine internal Ocelot data
structures to identify mapped textures, compute addresses
of referenced samples, and interpolate accordingly.

Additionally, PTX includes several other instructions that
do not have trivial mappings to LLVM instructions. These
include transcendental operators such as cos and sin as well
as parallel reduction. These too are implemented by calls
into the Ocelot runtime which in turn calls C standard li-
brary functions in the case of the floating-point transcen-
dentals. Reductions are defined for a particular warp size;
in the translation to multicore, the warp size is a single
thread, so they are reducible to a mov instruction.

5. CHARACTERIZATION METHODOLOGY

5.1 Metrics and Statistics
Ocelot’s PTX emulator may be instrumented with a set

of user-supplied event handlers to generate detailed traces



define default i32 
  @_Z_ocelotTranslated__Z17k_simple_sequencePi( 
    %LLVMContext* %__ctaContext ) nounwind align 1;
{
BB_2_1:
 %rt0 = getelementptr %LLVMContext* %__ctaContext, 
   i32 0, i32 0, i32 0;
 %rt1 = load i16* %rt0;
 %r0 = zext i16 %rt1 to i32;
 %rt2 = getelementptr %LLVMContext* %__ctaContext, 
    i32 0, i32 2, i32 0;
 %rt3 = load i16* %rt2;
 %r1 = bitcast i16 %rt3 to i16;
 %rt4 = getelementptr %LLVMContext* %__ctaContext, 
   i32 0, i32 1, i32 0;
 %rt5 = load i16* %rt4;
 %r2 = bitcast i16 %rt5 to i16;
 %rt6 = zext i16 %r1 to i32;
 %rt7 = zext i16 %r2 to i32;
 %r3 = mul i32 %rt6, %rt7;
 %r4 = add i32 %r0, %r3;
 %r5 = mul i32 %r4, 2;
 %r6 = add i32 %r5, 1;
 %rt8 = getelementptr %LLVMContext* %__ctaContext, 
   i32 0, i32 7;
 %rt9 = load i8** %rt8;
 %rt10 = bitcast i8* %rt9 to i64*;
 %r7 = load i64* %rt10, align 8;
 %r8 = sext i32 %r4 to i64;
 %r9 = mul i64 %r8, 4;
 %r10 = add i64 %r7, %r9;
 %rt11 = inttoptr i64 %r10 to i32*;
 store i32 %r6, i32* %rt11, align 4;
 ret i32 0;
 br label %exit;
exit:
 ret i32 0;
}

 .entry _Z17k_simple_sequencePi (
  .param .u32 __cudaparm_A)
 {
 .reg .u16 %rh<4>;
 .reg .u32 %r<10>;
 .loc 15 12 0
$LBB1__Z17k_simple_sequencePi:
 .loc 15 14 0
 mov.u16  %rh1, %ctaid.x;
 mov.u16  %rh2, %ntid.x;
 mul.wide.u16  %r1, %rh1, %rh2;
 cvt.u32.u16  %r2, %tid.x;
 add.u32  %r3, %r2, %r1;
 mul.lo.s32  %r4, %r3, 2;
 add.s32  %r5, %r4, 1;
 ld.param.u32  %r6, [__cudaparm_A];
 mul.lo.u32  %r7, %r3, 4;
 add.u32  %r8, %r6, %r7;
 st.global.s32  [%r8+0], %r5;
 .loc 15 15 0
 exit;
$LDWend__Z17k_simple_sequencePi:
 } // _Z17k_simple_sequencePi

__global__ void 
 k_simple_sequence(int *A) 
{
 int n = blockDim.x * blockIdx.x +
   threadIdx.x;
 A[n] = 2*n+1;
}

CUDA Kernel PTX Kernel LLVM Kernel

nvcc -ptx

Ocelot

Figure 2: PTX to LLVM translation.

of instructions and memory references. After each dynamic
PTX instruction is completed for a given program counter
and set of active threads, an event object containing pro-
gram counter, PTX instruction, activity mask, and refer-
enced memory addresses is dispatched to each registered
trace generator which handles the event according to the
performance metric it implements. We present the follow-
ing application metrics gathered in this manner building on
the set of metrics defined in our previous work[13]:

Activity Factor. Any given instruction is executed by
all threads in a warp. However, individual threads can be
predicated off via explicit predicate registers or as a result of
branch divergence. Activity factor is the fraction of threads
active averaged over all dynamic instructions.

Branch Divergence. When a warp reaches a branch
instruction, all threads may branch or fall through, or the
warp may diverge in which the warp is split with some
threads falling through and other threads branching. Branch
Divergence is the fraction of branches that result in diver-
gence averaged over all dynamic branch instructions.

Instruction Counts. These metric count the number
of dynamic instructions binned according to the functional
unit that would execute them on a hypothetical GPU. The
functional units considered here include integer arithmetic,
floating-point arithmetic, logical operations, control-flow,
off-chip loads and stores, parallelism and synchronizations,
special and transcendental, and data type conversions.

Inter-thread Data Flow. The PTX execution model
includes synchronization instructions and shared data stor-
age accessible by threads of the same CTA. Interthread data
flow measures the fraction of loads from shared memory
such that the data loaded was computed by another thread
within the CTA. This is a measure of producer-consumer
relationships among threads.

Memory Intensity. Memory intensity computes the
fraction of instructions resulting in communication to off-
chip memory. These may be explicit loads or stores to global
or local memory, or they may be texture sampling instruc-

tions. This metric does not model the texture caches which
are present in most GPUs and counts texture samples as
loads to global memory.

Memory Efficiency. Loads and stores to global mem-
ory may reference arbitrary locations. However, if threads
of the same warp access locations in the same block of
memory, the operation may be completed in a single mem-
ory transaction; otherwise, transactions are serialized. This
metric expresses the minimum number of transactions needed
to satisfy every dynamic load or store divided by the actual
number of transactions, computed according to the mem-
ory coalescing protocol defined in [17] §5.1.2.1. This is a
measure of spatial locality.

Memory Extent. This metric uses pointer analysis to
compute the working set of kernels as the number and lay-
out of all reachable pages in all memory spaces. It repre-
sents the total amount of memory that is accessible to a
kernel immediately before it is executed.

Context Switch Points. CTAs may synchronize threads
at the start and end of kernels as well as within sections of
code with uniform control flow, typically to ensure shared
memory is consistent when sharing data. Each synchro-
nization requires a context switch point inserted by Ocelot
during translation for execution on multicore as described
in[6].

Live Registers. Unlike CPUs, GPUs are equipped with
large register files that may store tens of live values per
thread. Consequently, executing CTAs on a multicore x86
CPU requires spilling values at context switches. This met-
ric expresses the average number of spilled values.

Machine Parameters. GPUs and CPUs considered
here are characterized by clock rate, number of concurrent
threads, number of cores, off-chip bandwidth, number of
memory controllers, instruction issue width, L2 cache ca-
pacity, whether they are capable of executing out-of-order,
and the maximum number of threads within a warp.

Registers per Thread. The large register files of GPUs
may be partitioned into threads at runtime according to the



Application Full Name Source
MRI-Q Magnetic Resonance Imaging Parboil
MRI-FHD Magnetic Resonance Imaging
CP Coulombic Potential
SAD Sum of Absolute Differences
TPACF Two-Point Angular Correction
PNS Petri Net Simulation
RPES Rys Polynomial Equation Solver
hotspot Thermal simulation Rodinia
lu Dense LU Decomposition
nbody Particle simulation CUDA SDK

Table 1: Benchmark Applications.

number of threads per CTA. Larger numbers of threads in-
creases the ability to hide latencies but reduces the number
of registers available per thread. On CPUs, these may be
spilled to local memory. This metric expresses the average
number of registers allocated per thread.

Kernel Count. The number of times an application
launches a kernel indicates the number of global barriers
across all CTAs required.

Parallelism Scalability. This metric determines the
maximum amount of SIMD and MIMD parallelism[13] avail-
able in a particular application averaged across all kernels.

DMA Transfer Size. CUDA applications explicitly
copy buffers of data to and from GPU memory before ker-
nels may be called incurring a latency and bandwidth con-
strained transfer via the PCI Express bus of the given plat-
form. We measure both the number of DMAs and the total
amount of data transferred.

5.2 Benchmarks
For this study, we selected applications from existing bench-

mark suites. PARBOIL [11] consists of seven application-
level benchmarks written in CUDA that perform a vari-
ety of computations including ray tracing, finite-difference
time-domain simulation, sorting. Rodinia [3] is a separate
collection of applications for benchmarking GPU systems.
Finally, the CUDA SDK is distributed with over fifty ap-
plications showcasing CUDA features. A list of the appli-
cations we selected appears in Table 1.

Kernels from these applications were executed on proces-
sors whose parameters are summarized in Table 2. This
selection consists of both CPUs and GPUs that together
offer a wide range for each of the listed parameters. We
expect these parameters that capture clock frequency, issue
width, concurrency, memory bandwidth, and cache struc-
ture to sufficiently model the performance of kernels from
the benchmark applications.

We chose to characterize PTX applications by the collec-
tion of statistics listed in Table 3. These may be classified
according to the way they are gathered. Some quantities
may be determined via static analysis before a kernel is ex-
ecuted such as static instruction counts of each kernel, the
number/size of DMA operations initiated before a kernel
launch, as well as upper bounds on working set size deter-
mined by conservative pointer analysis. Others may be de-
termined at runtime by inserting instrumentation into ker-
nels and recording averages as they execute; these include
SIMD and MIMD parallelism metrics. Finally, some met-
rics – typically dynamic instruction counts – may only be
determined by executing the kernel to completion via PTX
emulation and analyzing the resulting instruction traces.
Note that all of these metrics were collected via execution
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Figure 3: Factor loadings for two machine princi-
pal components. PC0 (black) corresponds to single
core performance, while PC1 (white) corresponds
to multi-core throughput.

on the Ocelot PTX Emulator, therefore, they are indepen-
dent of the micro-architecture of a particular CPU or GPU.

Table 4 lists the quantitative results from each Parboil
application collected for the statistics listed in Table 3.
Our analysis also covered the Rodinia benchmarks and the
CUDA SDK. While we include some of that analysis in the
discussions the detailed results are omitted due to space
constraints.

6. RESULTS
Our methodology for modeling the interaction between

machine and program characteristics uses principal compo-
nent analysis to identify independent parameters, similar
to [7], cluster analysis to discovers sets of related appli-
cations, and multivariate regression combined with projec-
tions onto convex sets[2] to build predictive models from
principal components.

6.1 Principal Component Analysis
Principal Component Analysis (PCA) is predicated on

the assumption that several variables used in an analysis
are correlated, and therefore measure the same property
of an application or processor. PCA derives a set of new
variables, called principal components, from linear combi-
nations of the original variables such that there is no corre-
lation between any of the new variables. PCA identifies the
new variables with the most information about the original
data thereby reducing the total number of variables needed
to represent a data set. In our analysis, we use a normalized
PCA (zero mean, unit variance) because each of our origi-
nal metrics are expressed using different units. We choose
enough principal components to account for at least 85% of
the variance in the original data.

Once PCA has identified a set of principal components,
we apply a varimax rotation[15] to the principal compo-
nents. This distributes the contribution of each original
variable to each principal component, such that each origi-
nal variable either strongly impacts a principal component
or it very weakly impacts it. In other words, it causes each
original metric to influence a single principal component,
easing analysis of the data.



Nehalem Atom Phenom 8600 GS 8800 GTX GTX280 C1060
Type Out-of-order In-order Out-of-order In-order In-order In-order In-order

CPU CPU CPU GPU GPU GPU GPU
Issue Width 4 2 3 1 1 1 1
Clock Frequency (GHz) 2.6 1.6 2.2 1.2 1.5 1.3 1.3
Hardware Threads per Core 2 2 1 24 24 24 24
Cores 4 1 4 2 16 30 30
Warp Size 1 1 1 32 32 32 32
Memory Controllers 3 1 2 2 6 8 8
Bandwidth per Controller (GB/s) 8.53 3.54 8.53 5.6 14.3 17.62 12.75
L2 Cache (kB) 512 512 512 0 0 0 0

Table 2: Machine parameters.
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Figure 4: The machine principal components.
GPUs have high core counts and slow SIMD cores
while CPUs have fewer, but faster, cores.

For the statistics gathered in the previous section, we
perform two separate PCAs: one which only includes ap-
plication statistics and another which only includes machine
statistics. This is valid because the metrics were collected
via the Ocelot PTX emulator, which is architecture agnos-
tic.

6.2 Machine Principal Components
From the set of machine statistics, PCA yielded two prin-

cipal components that are shown in terms of factor loadings
in Figure 3 and plotted in Figure 4. Clusters reiterate the
few number of high-speed cores among the CPUs and a
much larger number of lower-speed cores among the GPUs.

PC0: Single Core Performance. The variables that
contribute strongly to the first principal component are
shown in the left of Figure 3. Note that all of these met-
rics, clock frequency, issue width, cache size, etc correspond
to the performance of a single processor core. Additionally,
note that threads-per-core and warp size are negatively cor-
related with clock frequency, issue width, and out of order,
highlighting the differences between GPU and CPU design
philosophies.

PC1: Core and Memory Controller Count. The
second PC illustrates that the core count is correlated with
the memory controller count and memory bandwidth per
channel, indicating that multi-core CPUs and GPUs are
designed such that the off-chip bandwidth scales with the
number of cores.

Discussion. Though the intent of this paper is to derive

relationships between these metrics and the performance
of machine-application combinations, this analysis also ex-
poses trends in the way that CPUs and GPUs are designed.
The division of the machine metrics into these two princi-
pal components can be explained as follows: the design of
a single core typically does not influence the synthesis of
many single cores and memory controllers into a multi-core
processor. The performance of a single core in a proces-
sor is either characterized by clock frequency, cache size,
superscalar width, etc or a high degree of hardware mul-
tithreading and large SIMD units. Figure 4 shows a clear
distinction between CPU and GPU architectures.

This classification holds even for processors not included
in this study. For example, recently released GPUs by In-
tel[12] and AMD can both be characterized by a large num-
ber of threads per core and wide SIMD units; even embed-
ded CPUs such as ARM Cortex A9 [5] have begun to move
towards out of order execution.

6.3 Application Components
The PCA of the application statistics yielded five princi-

pal components, the factor loadings of which are shown in
Figure 5. We would like to note that PCA reveals relation-
ships that hold only for a given set of data, in this case, the
applications that were chosen. Given a different set of ap-
plications, PCA may reveal a different set of relationships.
However, the fact that these trends are valid across appli-
cation from both Parboil and Rodinia, which are designed
to be representative of CUDA applications, indicates that
they may represent fundamental similarities in the way that
developers write CUDA programs.

PC0: MIMD Parallelism. The first principal compo-
nent is composed of metrics that are related to the MIMD
parallelism of a program. Recall that MIMD parallelism
measures the speedup of a kernel on an idealized GPU with
an infinite number of cores and zero memory latency. It is
bound by the number of CTAs in each kernel. The corre-
lation between MIMD parallelism and DMA Size indicates
that applications that copy a larger amount of memory to
the GPU will also launch a large number of CTAs. It is
interesting to note that during our preliminary evaluation
which only included the Parboil benchmarks shown in Ta-
ble 4, this component also included the majority of dynamic
instruction counts. Adding the Rodinia hotspot application
and the SDK nbody application broke the relationship be-
tween MIMD parallelism and problem size, indicating that
not all CUDA applications are weakly scalable. This dis-
tinction motivates the need for the cluster analysis in the
next section, where applications with similar characteristics
can be identified and modeled separately. As a final point,
notice that several static instruction counts are highly cor-



Metric Units Description Collection method
Extent_of_Memory bytes Size of working set static analysis
Context_switches switch points Number of thread context switch points static analysis
Live_Registers registers Number registers spilled at context switch points static analysis
Registers_Per_Thread registers Number of registers per thread static analysis
DMAs transfers Number of transfers between GPU memory static analysis
Static_Integer_arithmetic instructions Number of integer arithmetic instructions static analysis
Static_Integer_logical instructions Number of logical instructions static analysis
Static_Integer_comparison instructions Number of integer compare instructions static analysis
Static_Memory_offchip instructions Number of off-chip memory transfer instructions static analysis
Static_Memory_onchip instructions Number of on-chip memory transfer instructions static analysis
Static_Control instructions Number of control-flow instructions static analysis
Static_Parallelism instructions Number of parallelism instructions static analysis
Dynamic_Integer_arithmetic instructions Number of executed integer arithmetic instructions emulation
Dynamic_Integer_logical instructions Number of executed integer logical instructions emulation
Dynamic_Memory_offchip instructions Number executed off-chip memory transfer instructions emulation
Dynamic_Memory_onchip instructions Number of executed on-chip memory transer instructions emulation
Dynamic_Integer_comparison instructions Number of executed integer comparison instructions emulation
Static_Float_single instructions Single-precision floating point arithmetic static analysis
Static_Float_comparison instructions Single-precision floating point compare static analysis
Static_Special instructions Special function instructions static analysis
Memory_Efficiency percentage Memory efficiency metric instrumentation
Memory_Sharing percentage Inter-thread data flow metric instrumentation
Activity_Factor percentage Activity factor metric instrumentation
MIMD speedup MIMD Parallelism metric instrumentation
SIMD speedup SIMD Parallelism metric instrumentation
Dynamic_Float_single instructions Number of single-precision arithmetic instructions emulation
Dynamic_Float_comparison instructions Number of singl-precision comparison instructions emulation
DMA_Size bytes Avg DMA transfer size static analysis
Dynamic_Control instructions Number of executed control-flow instructions emulation
Dynamic_Parallelism instructions Number of executed parallelism instructions emulation
Dynamic_Special instructions Number of executed spcial instructions emulation
Static_Float_double instructions Number of double precision floating point instructions static analysis
Memory_Intensity instructions Memory Intensity metric instrumentation
Dynamic_Float_double instructions Number of executed double-precision floating point instructions emulation
Dynamic_Other instructions Other instructions emulation

Table 3: List of metrics.

related with the problem size. This relationship is difficult
to explain intuitively, and it would be relatively simple to
craft a synthetic application that breaks this relationship.
However, it is significant that none of these applications do.
Results like this motivate the use of a technique like PCA,
which is able to discover relationships that defy intuition.

PC1: Problem Size. The second component is com-
posed most significantly of average dynamic integer, floating
point, and memory instruction counts which collectively de-
scribe the number of instructions executed in each kernel.
As described in the analytical model developed by Hong
et. al.[10], these dynamic instruction counts are strong de-
terminants of the total execution time of a program, and
therefore the high degree of correlation is expected. What
is not obvious is the relationship between the number of
DMA calls executed before a kernel is launched and these
instruction counts. We find that across all principal com-
ponents, there is at least one metric that is available before
launching a kernel that is highly correlated with the dy-
namic metrics in that component. We exploit this property
in Section 6.5 to build a predictive model for application
execution time using only static metrics.

PC2: Data Dependencies. We believe that the second
principal component exposed the most significant and non-
obvious relationship in this study. It indicates that data
dependencies are likely to be propagated throughout all lev-
els of the programming model; if there is a large degree of
data sharing between instructions, then there is likely to be
a large degree of data sharing among threads in each CTA
and among all CTAs in a program. Notice that this com-

ponent shows that registers that are alive at context switch
points, Memory Sharing, and total kernel count are highly
correlated. Data is typically passed from one thread to an-
other at context switch points. More context switch points
imply more opportunities for sharing data between threads
and more registers alive at these context switch points imply
more data that can be transferred to another thread. Mem-
ory sharing measures exactly, the amount of memory that
is passed from one thread to another through shared mem-
ory. Finally, CTAs cannot reliably exchange data within
the same kernel, but kernels have implicit barriers between
launches that allow data to be exchanged between CTAs in
different kernels. The correlation between memory sharing
and kernel count seems to indicate that programmers will
break computations that are required to share data among
CTAs into multiple kernels. Furthermore, it seems to in-
dicate that programs are either embarrassingly parallel at
all levels, from the instruction level up to the task level, or
have dependencies at all levels.

PC3: Memory Intensity. The next principal compo-
nent is composed almost entirely of metrics that are asso-
ciated with the memory behavior of a program. It should
be clear that kernels that are given access to a large pool
of memory via pointers are likely to access a significant
amount of it. It is also interesting that applications that
access a large amount of memory are likely to access it rel-
atively efficiently, possibly because it can be accessed in a
streaming rather than a random pattern. This component
reveals that the memory intensive nature of applications
is reflected in all levels of the memory hierarchy, from the



Metric CP MRI FHD MRI-Q PNS RPES SAD TPACF
Static
Extent_of_Memory 1112592 582630 517229 720002676 59883768 8948776 5009948
Context_switches 0 0 0 19 5 2 4
Live_Registers 0.00000 0.00000 0.00000 23.15000 4.60000 5.50000 14.50000
Total_Registers 20.000 18.500 17.000 35.000 27.000 21.000 22.000
DMAs 11 17 11 224 6 3 3
DMA_Size 1.5351e+05 4.6501e+04 6.7397e+04 7.1420e+01 1.1537e+07 2.9996e+06 1.6602e+06
Integer_arithmetic 3410 31080 5388 13102152 200196 1620 448
Integer_logical 0 12516 2136 2300592 111150 280 72
Integer_comparison 220 8582 1400 2244480 25560 142 68
Float_single 5280 17290 2908 617232 1279008 186 18
Float_double 0 840 0 0 0 0 0
Float_comparison 0 1050 180 0 38448 0 6
Memory_offchip 1760 2478 468 1094184 10530 66 14
Memory_onchip 770 1862 332 1178352 142434 198 64
Control_instr 660 11466 1968 3226440 186300 182 134
Parallelism_instr 0 0 0 533064 15030 12 8
Special_instr 880 0 0 0 43254 0 0
Othe_instrr 0 0 0 0 0 0 0
Instrumented
Activity_Factor 100.000 100.000 100.000 97.200 63.850 95.400 80.510
Memory_Intensity 0.010000 0.060000 0.040000 4.640000 2.740000 5.880000 0.010000
Memory_Efficiency 49.200 49.600 49.600 65.600 73.100 47.700 48.100
Memory_Sharing 0.00000 0.00000 0.00000 51.50000 76.60000 2.90000 12.40000
SIMD Parallelism 128.000 292.570 320.000 248.880 40.580 70.280 206.110
MIMD Parallelism 2.5600e+02 1.1057e+02 9.7500e+01 1.7990e+01 6.4757e+04 5.9400e+02 1.5663e+02
Emulated
Integer_arithmetic 2.2596e+08 3.7218e+07 2.2805e+07 5.2469e+10 2.1425e+10 1.5161e+07 1.3488e+09
Integer_logical 0 1.3738e+07 7.8520e+06 2.4229e+10 8.9300e+09 5.9380e+05 2.2153e+08
Integer_comparison 1.1267e+08 2.6135e+07 1.2572e+07 5.6280e+09 5.0089e+09 6.0093e+05 2.0857e+08
Float_single 2.9293e+09 2.1333e+08 1.1878e+08 2.1047e+10 4.1966e+10 6.0445e+06 6.0892e+07
Float_double 0 11010048 0 0 0 0 0
Float_comparison 0 1.3738e+07 7.8505e+06 0 1.2119e+09 0 1.4098e+08
Memory_offchip 4.5056e+05 3.8136e+04 1.0896e+04 5.3392e+09 6.8786e+08 1.9127e+05 2.5571e+05
Memory_onchip 4.5064e+08 1.3801e+07 6.3024e+06 4.8278e+08 1.4313e+10 4.4984e+06 3.2223e+08
Control_instr 1.1278e+08 4.5258e+07 2.6641e+07 5.7445e+09 1.5469e+10 8.2229e+05 8.4251e+08
Parallelism_instr 0 0 0 4.1073e+07 2.6514e+09 1.9008e+04 2.0161e+07
Special_instr 9.0112e+08 0 0 0 9.9957e+08 0 0
Other_instr 0 0 0 0 0 0 0

Table 4: Metrics for each of the Parboil benchmark applications using the default input size.

register pressure to the ratio of memory to compute instruc-
tions to the amount of memory accessible by a kernel; for
this analysis, a program with high register pressure can be
predicted to be very memory intensive. Finally, this com-
ponent is negatively correlated with dynamic floating point
instruction count, indicating that applications either stress
the memory hierarchy or the floating point units in a given
processor, but not both. This information could be used
in the design of highly heterogeneous architectures where
some processors are given low latency and high bandwidth
memory links, others are given extra floating point units,
and workloads are characterized and directed to one or the
other accordingly.

PC4: Control Flow Uniformity/SIMD Parallelism.
The final component exposes several very interesting rela-
tionships involving the Activity Factor of an application.
Recall that Activity Factor refers to the average ratio of
threads that are active during the execution of a given dy-
namic instruction. First, Activity Factor is directly corre-
lated with special instructions, indicating that it is unlikely
that texture or transcendental operations will be placed im-
mediately after divergent branches; if a special instruction
is executed by one thread, it is likely to be executed by all
other threads. This relationship is reversed for double pre-
cision floating point instructions; programs that execute a
significant number of double precision instructions are likely

to be highly divergent.
Discussion. Though the intent of this analysis was to

identify uncorrelated metrics that could be used as inputs
to the regression model and cluster analysis in the follow-
ing sections, PCA also exposed several key relationships
between program characteristics that may inform the de-
sign of CUDA applications, data parallel compilers, or even
new processors optimized for different classes of applica-
tions. For example, we expected the dynamic single preci-
sion floating point instruction count to be negatively corre-
lated with the dynamic double precision count. However,
as can be seen in Figure 5, they are not correlated all, in-
dicating that many applications perform mixed precision
computation. After examining several applications, we re-
alized that some used floating point constants in expressions
involving single precision numbers. The compiler interprets
all floating point constants as double precision unless they
are explicitly specified to be single precision, and any oper-
ations involving these constants would be cast up to double
precision, performed at full precision, and then truncated
and stored in single precision variables. This is probably
not the intention of the developer, and in processors where
there are limited double precision floating point units, such
as the C1060, this may incur a significant performance over-
head.
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Figure 5: Factor loadings for the five application principal components. A factor loading closer to +-1
indicates a higher influence on the principal component.
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Figure 6: This plot compares MIMD to SIMD
parallelism. It should be clear that these metrics
are completely independent for this set of appli-
cations; the fact that an application can be easily
mapped onto a SIMD processor says nothing about
its suitability for a multi-core system. A comple-
mentary strategy may be necessary that considers
both styles of parallelism when designing new ap-
plications.

6.4 Cluster Analysis
Cluster Analysis is intended to identify groups applica-

tions with similar characteristics. It is useful in the devel-
opment of benchmarks suites that are representative of a
larger class of applications, visualizing application behav-
ior, and in the context of this study, simplifying the devel-
opment of accurate regression models via regression trees.
For this analysis, we project the original application data
onto the principal components. This allows the individual
applications to be compared in terms of the principal com-
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Applications with uniform control flow tend 
to be more amenable to data sharing

Figure 7: A comparison between Control Flow Di-
vergence and Data Dependencies/Sharing. Exclud-
ing the hotspot applications, applications with more
uniform control flow exhibit a greater degree of data
sharing among threads. Well structured algorithms
may be more scalable on GPU-like architectures
that benefit from low control flow divergence and
include mechanisms for fine grained inter-thread
communication.

ponents, for example, we can say that cp has the least data
dependencies and nbody4096 has the most. Though there
are 10 possible projections of the five principal components,
we present only three interesting examples due to space con-
straints. Figure 8 shows that MIMD and SIMD parallelism
are not correlated, Figure 7 highlights a non-intuitive rela-
tionship between control flow uniformity and inter-thread
data sharing, and Figure 6 illustrates how the nbody and
hotspot applications scale with problem size. These indi-
vidual cases are discussed in depth in the captions.
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Figure 8: This figure shows the effect of increased
problem size on the Memory Intensity of the Nbody
and Hotspot applications. While this relationship
probably will not hold in general, it demonstrates
the usefulness of our methodology for characteriz-
ing the behavior of individual applications. We had
originally expected these applications to become
more memory intensive with an increased problem
size; they actually become more compute intensive.
This figure is also useful as a sanity check for our
analysis, it correctly identifies the Nbody examples
with higher body counts as having a larger problem
size.

6.5 Regression Modeling
The goal of this study is to derive accurate models for

predicting the execution time of CUDA applications on het-
erogeneous processors. If possible we would also like to be
able to make these predictions using only metrics that are
available before a kernel is executed. As shown in Section
6.3, 85% of the variance across the set of metrics can be
explained by five principal components, each of which is
composed of at least one static metric that is available be-
fore the execution of a kernel. For example, according to
the PCA, the size of DMA transfers, the number of DMA
transfers, the number of live registers at context switches,
the extent of memory accessible by each kernel, and the
number of double precision instructions are all statically
available metrics that should be good predictors of kernel
performance.

In this example, we use the polynomial form of linear
regression to determine a relationship between static pro-
gram metrics and the total execution time of an application.
Modeling M variables, each with an N-th order polynomial,
requires at least N ∗M samples for an exact solution using
the least squares method for linear regression. This lim-
its the degree of our polynomial model in cases where only
a few samples are available, which may be a concern for
models that are built at runtime as a program is executing.

Though linear regression will generate a model for pre-
dicting the execution time of a given application on a partic-
ular CPU or GPU, it can generate predictions that are ob-
viously not valid. For example, it is common for the model
to predict short running kernels to have negative execution
times, or predict that the execution time of a relatively
more power processor is significantly slower than another
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Figure 9: Predicted execution times for the
280GTX using only static data. The left 12 ap-
plications are used to train the model and the pre-
dictions are made for the rightmost 13 applications.

processor that is invariantly slower in all other cases. In
order to account for these cases, we applied a technique
typically used in image processing, Projections Onto Con-
vex Sets(POCS)[2], to each prediction. POCS works by
applying a series of transformations to data, each of which
enforces some a priori constraint on the data that must be
true in all cases. If each successive transformation causes
another invariant property to be violated, the iterative ap-
plication of each transformation is necessary to find a result
that satisfies all of the a priori constraints. In this case, we
impose the constraints that all execution times must be
greater than 0, and that all predictions for a given applica-
tion on a given architecture should be within two standard
deviations of the mean of all execution times of the same
application on other architectures.

In this study, we recorded the metrics described in Sec-
tion 5.1 and execution times of 25 applications on seven
different processors. We used this data to predict the exe-
cution times of new applications on the same processor and
the same application on different processors. We found that
the models are most accurate when predicting the same ap-
plication on a different, but similar style of architecture.
For example, predicting the execution time of an applica-
tion on an 8800GTX GPU that has previously run on an
8600GS and a 280GTX. Predicting the execution time of a
new application on the same processor is also relatively ac-
curate. However, models that attempt to, for example, pre-
dict GPU performance given CPU training data are wildly
inaccurate. In these cases we believe that it will be neces-
sary to develop separate models for each cluster of applica-
tions using a technique akin to regression trees on the data
presented in Section 6.4.

Application Modeling. Our first experiment attempts
to build a model for the execution time of a the remain-
ing 13 applications on an NVIDIA 280GTX GPU using 12
randomly selected applications for training. We chose to
only include results from the 280GTX in this paper be-
cause the models for the other architectures yielded similar
results. Figure 9 compares the predicted execution time to
the actual execution time for each of the 25 applications.
Note that this model is intended to be used at runtime in
a system that launches a large number of kernels, there-



Figure 10: Predicted execution times for the
8800GTX using only static data and all other GPUs
to train the model. Black indicates the measured
time, and gray is the predicted time.

fore it should be perfectly accurate for kernels that it has
already encountered. This model is the most accurate for
the hotspot, sad, and smaller sized pns applications where
all predictions are within 80% of the actual execution time.
It is relatively inaccurate for the nbody, tpacf, rpes, lu, and
larger pns applications. In the worst case, the execution
time of tpacf is predicted to be only 22% of the recorded
time.

GPU Modeling. The next experiment uses the actual
execution times of each application on the Geforce 280GTX,
Geforce 8600GS, and Tesla C1060 to predict the execution
time of the same applications on the Gefore 8800GTX. Fig-
ure 10 shows the predicted execution time as well as the
measured execution time for each application. This model
was the most accurate that we evaluated, the worst case
being the pns2000 application, for which to total execution
time is predicted to be 3.9s and the actual execution time
was 2.8s. In all other cases, the model underestimates the
performance of the 8800GTX by between 16% and 1%. It
is worthwhile to note that this model is able to predict the
impact of increased problem size on the same application.
For example, the execution time of each run of the nbody
application is predicted to increase as the number of bodies
simulated increases. The Parboil benchmark tpacf is rela-
tively difficult to be predict by this model, and, in fact, the
CPU and application models as well. This model always
places the performance of the 8800GTX between that of
the 8600GS and the Tesla C1060, which is also true for the
actual execution times of all applications.

CPU Modeling. The third experiment uses training
results from the Intel Nehalem and Intel Atom processors to
predict the performance of the AMD Phenom processor. It
should be immediately clear that moving to CPU platforms
changes the relative speed of each application. For example,
on all of the GPU processors, the performance of sad and
rpes are relatively similar. However, on the CPUs, sad is
nearly 25x faster than rpes. This reinforces the point that
GPUs and CPUs are more efficient for certain classes of
applications than others even when they are both starting
with the same implementation of the program.

Compared to the GPU model, the CPU model is slightly
less accurate as can be seen by comparing Figure 10 and

Figure 11: Predicted execution times for the AMD
Phenom processor using the Atom and Nehalem
chips for training.

Figure 12: Predicted execution times for the
280GTX using all of the other processors for train-
ing. This is the least accurate model; it demon-
strates the need for separate models for GPU and
CPU architectures.

Figure 11. The CPU model in Figure 11 is the most accu-
rate for hotspot, the larger pns benchmarks, the mri bench-
marks, and nbody. For those applications the predicted exe-
cution times fall with 80% of the measured execution times.
The model is the least accurate for the cp application, which
is predicted to take 62s and actually takes 294s to execute.
It is interesting to note that this application only takes 54s
on the Intel Nehalem processor, which is typically compet-
itive with the AMD Phenom. Whatever machine charac-
teristic causes this large discrepancy in performance is not
captured in our set of machine metrics. It is possible that a
more detailed model including more machine metrics would
be able to capture that relationship.

GPU-CPU Modeling. The final experiment demon-
strates a case in which our methodology fails to generate
an accurate model. Figure 12 presents the predictions for a
model for the 280GTX using results from all other proces-
sors for training. This model excessively overestimates the
execution time of each application with only cp, hotspot,
and sad being within 50% of the total execution time. As



our cluster analysis shows, GPU and CPU style architec-
tures have very different machine parameters and combin-
ing them in the same model significantly reduces the ac-
curacy of the model. It motivates the need for a two stage
modeling approach in which applications and processors are
first classified into related categories with similar character-
istics and then modeled separately.

6.6 Discussion
A significant result of this paper is that the methodology

of principal components analysis, cluster analysis, and re-
gression modeling is able to generate predictive models for
CPUs and GPUs, suggesting that there are certain char-
acteristics that make an application more or less suitable
for a given style of architecture. Unfortunately, while the
regression method used in this study can generate an accu-
rate model, it usually includes complex non-linear relation-
ships that are difficult to draw any fundamental insights
from. Additional analysis is needed to discover these rela-
tionships, perhaps by determining correlations between ap-
plication metrics and relative performance on a particular
system in future work.

Though the relationships described in the preceding sec-
tions are applicable only for the applications machine con-
figurations used in this study, the methodology is a univer-
sally valid tool that can be applied to any set of applica-
tions. An extension of this work would be to increase the
set of possible benchmark applications and input sizes then
use PCA and cluster analysis to select the most representa-
tive applications and inputs in a manner described in detail
in [18].

Finally, this study exposed several non-intuitive relation-
ships between application characteristics, for example, that
applications with highly uniform control flow are more amenable
to fine-grained synchronization and inter-thread commu-
nication. Discovering these relationships is becoming in-
creasingly important as they can expose opportunities for
architecture optimizations and influence the selection of
well structured algorithms during application development.
Clearly, there is a pressing need for further analysis and
additional data.

7. CONCLUDING REMARKS
This paper presents an emulation and translation infras-

tructure and its use in the characterization of GPU work-
loads. In particular, standard data analysis techniques are
employed to characterize benchmarks, their relationships to
machine and application parameters, and construct predic-
tive models for choosing between CPU or GPU implementa-
tions of kernel based on Ocelot’s translation infrastructure.
Accompanying the insights this approach provides is a clear
need for deeper and more refined characterizations and pre-
diction models - a subject of ongoing and future work.
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