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Abstract—CUDA applications represent a new body of parallel
programs. Although several paradigms exist for programming
distributed systems and many-core processors, many users strug-
gle to achieve a program that is scalable across systems with
different hardware characteristics. This paper explores the scala-
bility of CUDA applications on systems with varying interconnect
latencies, hiding a hardware detail from the programmer and
making parallel programming more accessible to non-experts. We
use a combination of the Ocelot PTX emulator [1] and a discrete
event simulator to evaluate the UIUC Parboil benchmarks [2] on
three distinct GPU configurations. We find that these applications
are sensitive to neither interconnect latency nor bandwidth, and
that integrated GPU-CPU systems are not likely to perform any
better than discrete GPUs or GPU clusters.

I. INTRODUCTION

Many-core or distributed systems such as GPUs, tiled many-
core processors, or high performance clusters are very chal-
lenging programming environments. The goal of application
development for such systems is typically high performance
rather than high productivity. In most cases, architecture
features such as non-uniform memory architectures (NUMA),
interprocessor communication, SIMD operations, etc must be
either implicitly or explicitly addressed by the programmer. In
many cases, changing even a single system parameter, such as
L1 cache size or barrier latency, may require an application to
use completely different data structures and algorithms.

Obviously this is undesirable. A developer for a parallel
or distributed system is presented with a nearly unmanageable
degree of complexity. Should data be redundantly computed in
parallel or broadcast from a single node? Will CPU throughput
or network bandwidth be the bottleneck? Are random mem-
ory accesses significantly slower than sequential accesses? Is
hardware acceleration available for common math functions?
At some point, the complexity becomes significant enough
that application development for parallel systems becomes
intractable.

We argue that abstractions are needed to reduce the com-
plexity of programing parallel and distributed systems. In this
context, abstractions are programing language or hardware
constructs that hide system complexities from users. For exam-
ple, caches are abstractions that hide the latency and bandwidth
gap between SRAM and DRAM from the programmer. The

most useful abstractions hide complexity without significantly
sacrificing performance.

This work evaluates the utility of abstractions in the CUDA
programming model for hiding GPU-CPU interconnect latency
and bandwidth. In Section II we cover typical GPU system
configurations. In Section III, we present an overview of the
CUDA programming model, and highlight the abstractions that
hide GPU-CPU communication. In Section IV, we describe
the infrastructure used to evaluate the latency sensitivity of
CUDA application. In Section V, we present results from
several CUDA benchmarks. Section VI briefly covers related
work and Section VIII concludes with the most significant
implications of our findings.

II. GPU SYSTEM ARCHITECTURE

Though GPUs have typically been used as accelerator cards
connected via a system interconnect like PCIe, there has been
an increasingly popular migration towards tightly-integrated
heterogeneous CPU-GPU processors in the embedded domain
and distributed multi-GPU systems in the high performance
domain. Each of these classes of systems is expected to run
the same workloads. However, the latency and bandwidth
of the CPU-GPU communication link changes significantly
for each of these systems. In this paper we would like to
explore the impact on currently existing applications exposed
by these new system configurations. We begin by highlighting
the differences among the three classes of systems.

A. Discrete GPU - PCIe

GPUs have traditionally been used as add-in accelerators for
offloading graphics applications on desktop systems. Systems
in this configuration are typically referred to as having a
discrete GPU. As add in cards, discrete GPUs have historically
been treated as slave devices where the CPU issues a series
of commands and data transfers through the northbridge over
an interconnect such as PCI. These devices contain their
own locally managed DRAM that is not directly visible to
the host CPU. As systems with discrete GPUs evolved, new
interfaces such as AGP and PCIe increased the communication
bandwidth between the CPU and the GPU and DMA engines
were added to free the CPU from direct involvement in data
transfers.



Discrete GPUs represent middle of the road interconnection
latency and bandwidth. The theoretical upper-bound perfor-
mance of the commonly used 16x PCIe 2.0 interconnect is
16GB/s for bidirectional communication. Real world perfor-
mance is limited by driver and protocol overheads, and our
own measurements show that it is possible to attain 4.2GB/s
for a unidirectional DMA transfer. Other studies have shown
that the best case PCIe latency is on the order of 1us for
small transfers [3]. Compared to other machine configurations,
discrete GPUs have lower bandwidth and higher latency than
tightly integrated GPU-CPU systems, but higher bandwidth
and lower latency than GPU clusters. As a final point, most
CUDA applications were designed specifically for systems
with discrete GPUs.

B. HPC - Bridged PCIe

NVIDIA has recently introduced a new class of GPUs
system where a set of several GPUs are packaged into a
standalone 1U blade. These GPUs are connected via bridged
PCIe to a host system, and the entire unit is meant to be used
as a node in a cluster or grid. In the best case, the bandwidth of
these systems will be reduced to half of that of an equivalent
discrete GPU due to the PCIe bridge servicing two GPUs on
the same link. In the worst case, kernels may be launched
on a GPU that is not directly connected to a node, forcing
the kernel’s data and code to be transferred over the node-
to-node interconnect. The most popular cluster interconnects
are currently Infiniband and Ethernet, with bandwidths ranging
from 250MB/s to 12GB/s and minimum latencies ranging from
1us to 100us for a single hop. Though very high-end clusters
can attain interconnect performance similar to that of a discrete
GPU system, the average or worst cases increase latency by
up to 100x, and reduce bandwidth by up to 32x.

C. Integrated GPU-CPU

Intel and AMD have driven research into heterogeneous
integrated GPU-CPU processors where a number of GPU and
CPU cores are integrated on the same die, sharing a last
level cache and having direct access to the DRAM controllers.
Pangea was a research implementation of such a processor that
was designed in RTL and synthesized on an FPGA [4]. In
their paper, Wong et al. state that the communication latency
from the CPU to the GPU was only 12 cycles. Additionally,
because the GPU and CPU share the same memory space,
DMA copies that would be sent over PCIe in other systems
can simply be copied in memory1. From our experiments,
GPU memory typically has 10x greater bandwidth than a large
DMA operation over PCIe.

Taken together, these system configurations have latencies
spanning four orders of magnitude and bandwidths varying by
up to 320x. If CUDA applications are particularly latency or
bandwidth sensitive, then it is probably that many applications
would have to be significantly re-written to run on these
different systems. It turns out that this is not the case; most

1A copy is still necessary for many applications due to the semantics of
the CUDA programming model.

applications experience no performance degradation nor any
improvement when moving from one system to another. The
next section explores the characteristics of CUDA applications
that might make them tolerant to the wildly variant character-
istics of integrated, discrete, and clustered GPU systems.

III. THE CUDA PROGRAMMING MODEL

CUDA was introduced in 2006 as a programming language
for NVIDIA GPUs with minimal extensions to the C program-
ming language. What was not emphasized was that CUDA is
based around the idea of a Bulk-Synchronous Parallel (BSP)
program, an idea first introduced by Valiant [5] in 1990. As
explained in the subsequent section, BSP programs are implic-
itly designed to be latency tolerant in order to account for the
rising cost of global synchronization. Coupled together with
the fact that applications are composed of parallel streams of
GPU kernels and CPU code that are periodically synchronized,
there is significant evidence to suggest that CUDA applications
can tolerate communication latency in the GPU-CPU link.

A. Bulk-Synchronous Parallel Programming

CUDA applications, and other BSP programs, are built
around the idea that the number of cores per processor will
continue to increase, as will the time needed to performance
a global synchronization operation across all cores in the
system. In order to ensure that applications are scalable on
future processors, BSP programs (Kernels in CUDA) must be
specified in terms of a large number of work units (referred
to as CTAs in CUDA) that cannot communicate other than
at periodic global barrier operations. In many cases, the large
number of CTAs per Kernel represent enough work to hide the
global synchronization overhead, which in CUDA represents
a GPU-CPU communication operation.

B. CPU and GPU Streams

CUDA allows an application developer to partition a pro-
gram into highly parallel, completely encapsulated, GPU ker-
nels interleaved with C statements, where kernels are executed
on the GPU and the C statements are executed on the host
CPU. The explicitly partitioned design of CUDA programs
allows them to be expressed conceptually as separate streams
of operations, one which executes on a GPU device and the
other which executes on a CPU core. This characteristic makes
CUDA programs amenable to execution on systems with high
communication latency between the CPU and GPU, as kernel
execution on the GPU can be overlapped with C++ execution
on the CPU.

IV. INFRASTRUCTURE

In order to evaluate the impact of interconnect latency and
bandwidth on the performance of CUDA applications, We
leveraged two existing simulation tools, Ocelot and NfinSim,
coupled with new interconnect models designed specifically
for this evaluation to simulate the execution of complete
CUDA applications on systems with varying interconnect
characteristics. For this evaluation, we used the UIUC Parboil



Fig. 1. High Level Overview of Ocelot

Fig. 2. An Example Of A System Simulated In Parallel With NfinSim

benchmark suite, which is designed to be representative of
compute workloads for GPUs.

A. Ocelot - A CUDA Emulator

Ocelot is a just-in-time (JIT) compiler and runtime for
CUDA applications capable of running applications on mul-
tiple processors, not only GPUs. Figure 1 shows the backend
targets that are currently supported by Ocelot. CUDA appli-
cations are composed of two complementary components: 1)
binaries for each kernel and 2) a runtime component that
sets up the environment in which a kernel is executed. The
binaries for each kernel are stored in a virtual instruction set
(referred to as PTX) [6] which is normally translated to the
native instruction set of a particular GPU during execution.
Ocelot replaces the NVIDIA JIT compiler which only supports
NVIDIA GPUs with a custom compiler that includes back-end
targets for multi-core x86 (and other LLVM targets), NVIDIA
GPUs, and instruction by instruction emulation. Ocelot also
replaces NVIDIA’s implementation of the CUDA runtime
with a custom implementation that makes CPU and Emulated
devices appear to be CUDA-capable GPUs.

In the context of this study, we use Ocelot to instrument
CUDA applications as they are running. We collect the fol-
lowing information as a CUDA program is being executed: 1)
the sequence of calls into the CUDA runtime, 2) the execution

time of each call, 3) the code size and execution time of each
call, 4) the size of all DMA operations, and 5) the time spent
executing host code between successive CUDA calls. In order
to account for the startup latency associated with executing a
kernel, we measured the execution time of a series of no-op
kernels and subtracted this average startup cost on our test
system from the execution time of each kernel.

Assuming that the GPU used in each system configuration
is the same, then the execution time of the kernel should be
the same for each system. The only variance should be due
to the latency of sending commands and data to the GPU. We
express every CUDA runtime command as a packet that is
processed by the GPU along with the measured time required
to execute the call. To determine the total execution time
of the application using different interconnect configurations,
we treat the series of CUDA commands and host sections
as independent streams of operations that are synchronized
on DMA copies to or from the GPU. This is similar to the
early Decoupled Access/Execute architectures where opera-
tions from independent streams could be overlapped [7], albeit
our approach works at a higher level.

B. NFinSim - A Full System Simulator

NFinSim is a distributed discrete event simulator designed
to provide cycle-level simulation of large-scale parallel sys-
tems. It uses a modular design where a large system can
be composed of a collection of smaller models that are
explicitly connected and communicate by exchanging events,
an example of which is shown in Figure 2. The natural division
of a large system into components eases the partitioning of
the simulation into closely connected clusters than can be
simulated relatively independently, subject only to infrequently
exchanges of events among clusters. The goal is to design a
simulator for parallel systems that can take advantage of multi-
core processors and clusters to maintain a constant slowdown
factor between native execution on a parallel system and its
simulation on the same system.

For this study, we modeled each GPU system using the
following components: 1) A CPU core, 2) a simple host
network stack, 3) a point to point communication channel,
4) a GPU network stack, and 5) the GPU core.

CPU Core Model. For our CPU core model, we did not
perform detailed instruction level simulation. Instead, we used
the recorded execution of each host code segment from the
trace captured by Ocelot combined with the clock frequency
of the simulated processor to generate a cycle count. The CPU
model implemented two different protocols for processing
host code and CUDA calls, blocking and non-blocking. In
the blocking protocol, the CPU would execute each host
code section to completion before beginning the next CUDA
call. Furthermore, all CUDA calls were acknowledged by
the GPU such that only one call could be outstanding at
any time. For the non-blocking protocol, the CPU would
execute host code sections as they were encountered in the
program like the blocking protocol. However, most CUDA
calls would be launched asynchronously without waiting for



an acknowledgement before moving on to the next call or
section of host code. Synchronization would only take place
at DMA transfers which are required to complete before a new
host section can be executed in-case it uses the data copied
from the GPU or writes over the buffer being copied to the
GPU.

Host Network Stack. The host network stack is responsible
for establishing a connection between the CPU and GPU
models when the program starts up. Once this has been
accomplished, it receives packets with encapsulated CUDA
calls from the CPU, marshals them into frames that can be
transferred to the GPU and routes them to the correct GPU in a
system with multiple devices, ensuring that calls are delivered
to the GPU in the order in which they were sent. The overhead
associated with each stage of the protocol is modeled using
an analytical model that takes into account call packet size,
marshaled data size, inter-packet delay, routing time, and user-
to-OS buffer copy time.

Point To Point Channel. The point to point channel
model is used for all three classes of systems given that on
chip networks like HyperTransport and Quickpath, system
interconnects like PCIe, and cluster interconnects such as
Ethernet and Infiniband all use the same style of unidirectional
clock-encoded point to point links. This model is parame-
terized in terms of bandwidth, end-to-end latency, and inter-
frame delay. A significant portion of the interconnect latency
for the different system configurations is introduced in this
component. Therefore, our experiments focus on changing the
parameters of this component to match those of the system
classes presented in Section II.

The GPU Model. The final GPU model is used to determine
the execution time of a particular CUDA call on the simu-
lated GPU device. We evaluated the possibility of performing
detailed cycle-level simulations for each CUDA kernel using
either the Ocelot emulator as a front-end to drive timing
models or analytical models as in [8], or using another PTX
simulator such as GPGPU-SIM [9]. However, we eventually
decided to use measured execution times from real hardware
based on the idea that changing the communication latency
between the GPU and CPU will change the time at which a
kernel begins execution rather than its total execution time.
In this case, our model is a very simple module that accepts
packets with recorded GPU execution time and converts them
into cycles based on the clock frequency of the simulation.

C. Parboil - A CUDA Benchmark Suite

Parboil is a GPU benchmark suite written entirely in CUDA
with the intent to provide a means for characterizing the
performance of GPUs for compute intensive applications [2].
It includes two magnetic resonance imaging applications,
a coulombic grid potential application, a sum of absolute
difference kernel taken from an H.264 application, a two
point angular correlation function kernel, a petri net simulator,
and a polynomial equation solver. For this study, we assume
that the Parboil benchmarks are representative of CUDA
applications. This may or may not be a reasonable assumption.

Fig. 3. Impact of Bandwidth on Total Execution Time

Fig. 4. Impact of Latency on Total Execution Time

We recommend that any conclusions that are drawn from
the results of this study should not be applied directly to
other applications without first verifying that the application is
similar in structure to at least one of the Parboil benchmarks.

V. RESULTS

In order to determine the latency tolerance of the Parboil
benchmarks, we collected traces of each application running
using Ocelot on the system in Table I. We acknowledge that

CPU Intel i920 Quad-Core 2.66Ghz
GPU NVIDIA Tesla C1060
Memory 8GB DDR-1333 DRAM
CPU Compiler GCC-4.4.1
CUDA Compiler NVCC-2.3
CUDA Runtime/JIT Ocelot 0.9.264
OS 64-bit Ubuntu 9.10

TABLE I
TEST SYSTEM



the GPU used in our experiments is a high end discrete GPU
that would probably not be packaged together with a CPU on
the same chip due to power constraints. However, the intent
of these experiments is to highlight the latency sensitivity of
CUDA applications that may impact the design of applications
for a specific system configuration, rather than to model
any given system. We begin by exploring the sensitivity of
CUDA applications to link bandwidth before moving on to
link latency.

A. Bandwidth

In this experiment, we started with the worst case bandwidth
that an application could ever experience in a realistic envi-
ronment and gradually scaled up the bandwidth until there
was no further improvement in performance for any of the
benchmarks. For this experiment, we assume that there is no
communication startup latency between the GPU and the CPU
to isolate the effect of bandwidth on the total execution time
of the program. We began by simulating a 10Mb/s link similar
to an older Ethernet standard or a high end Internet connection
and move up to 10Gb/s (slightly slower than PCIe2.0) as
shown in Figure 3. The simulation was run using both blocking
and non-blocking communication.

As can be seen in the figure, most applications are not
sensitive to the interconnect bandwidth under any of the
configurations tested. Moving from blocking to non-blocking
execution, does not significantly impact the execution time of
any application, leading us to believe that overlapped GPU-
CPU execution is not the source of the latency tolerance of
CUDA applications. Even the most sensitive application, MRI-
FHD, only experiences a 1.6x increase in execution time using
the simulated 10Mb/s link. This is significantly slower than
the GPU cluster configuration. In fact, these results suggest
that it would even be possible to run these applications over
an Internet class connection without significant performance
degradation. Needless to say, none of these application are
bandwidth sensitive.

B. Latency

For the second experiment, we started with the worst case
latency reported for any of our three system configurations,
100cycles, and swept the latency down to that of the fastest
tightly-integrated system, about 100k cycles. This simulation
was run using the blocking and non-blocking protocols like
the previous experiment, and like the previous experiment,
the moving from blocking to non-blocking execution does not
significantly change the results. Figure 4 only presents the
results for the non-blocking protocol to improve the readability
of the figure.

Like the bandwidth experiment in the previous section, these
applications experience almost no performance degradation
with increased interconnect latency. The slowest application
is only 1.8 slower with an additional 100k cycles of latency
for sending a new packet over the link. It is also worthwhile
to note that the PNS application is the most latency sensitive
application that we tested, whereas MRI-FHD was the most

bandwidth sensitive application. Taken together, these results
suggest that CUDA applications are neither latency nor band-
width sensitive.

C. Implications

These results have potentially significant implications on the
design of GPU applications. One of the primary motivations
of the design of tightly-integrated GPU-CPU systems like
Pangea is the reduced communication latency from the CPU
to the GPU where the authors claim that ”This can achieve a
two-order of magnitude reduction in thread spawning latency”
[4]. For at least the applications studied in this paper, this
two-order of magnitude reduction in latency may not matter.
Pangea does not directly explore the advantage of this reduc-
tion in thread-spawn latency, instead showing that a kernel’s
execution time is very sensitive to DRAM memory latency,
which is an entirely different system parameter. As a positive
note, these results suggest that CUDA applications may be
good candidates for execution on distributed or cluster sys-
tems, or even future many-core architectures with significant
global synchronization latency.

VI. RELATED WORK

The subject of latency tolerance in GPU programs has, to
our knowledge, not yet been addressed directly in literature.
Instead, several independent works allude to it without men-
tioning it specifically. For example, when comparing software
caching to DMA transfers in GPU programs, Gelado et. al.
observe that none of the four applications tested experience
greater than 5% performance degradation from increasing the
PCIe link latency from 10 to 100 cycles [10]. vCUDA [11] and
gVIM [12] introduce a significant amount of latency into each
CUDA call by routing it to another domain in a virtualized
system, yet do not report dramatic slowdowns. Additionally,
an implementation of MPI using CUDA introduces an 800us
latency overhead in inter-thread communication yet manages
to achieve significant speedup in several applications [13].
All of these works implicitly rely on the latency tolerance
of CUDA applications, but none of them explore it in detail.

VII. OPEN PROBLEMS AND FUTURE WORK

Even though the results presented in this paper strongly
suggest that existing CUDA applications are not sensitive to
the latency or bandwidth of the GPU-CPU link, it may be
that applications developers are forced to spend extra efforts
to achieve this property when designing CUDA applications.
It is still the case that most CUDA applications are developed
and deployed on discrete GPU systems due to their significant
share of the total GPU market. This may artificially force
developers to account for constrained latency and bandwidth
resources in these systems such that the only existing CUDA
applications are latency tolerant by design rather than by some
inherent property in the programming model.

Conversely, it may be the case that the source of this latency
insensitivity is an artifact of the BSP design of the CUDA
programming model. Although our results suggest that overlap



Fig. 5. CUDA RPC Library

between GPU and CPU execution is not the source of the
observed latency tolerance, we were not able to rule out the
excessive number of CTAs launched by each CUDA kernel
as the underlying cause. Future work will need to compare
applications specifically designed for tightly-integrated GPU-
CPU systems to more confidently determine the cause.

Regardless of the source of this latency insensitivity, our
results suggest that there are a significant number of CUDA
applications that exhibit this property, and that designing
latency insensitive GPU applications is not any more difficult
than designing GPU applications. Moving forward, we would
like to apply these results to two new classes of applications.
First, we plan to explore the design of a GPU Remote
Procedure Call library, where remote GPUs in a data-center or
cloud environment can be grouped together to form a powerful
multi-gpu node. Secondly, we plan to extend our prior work
on runtime mapping of GPU applications on systems with
multiple GPUs [14], [15] to offload some kernels to remote
nodes in a clustered GPU system.

VIII. CONCLUSIONS

This paper explores the latency and bandwidth sensitivity of
CUDA applications leveraging the Ocelot CUDA emulator and
the NFinSim system simulator. For the applications evaluated
in this study, the most sensitive application only experiences
a 1.6x slowdown in response to a 1000x reduction in inter-
connect bandwidth and only a 1.8x slowdown in response to
a 1000x increase in interconnect latency. Though determining
the exact cause of this insensitivity is beyond the scope of this
paper, these results suggest that current GPU applications will
see no benefit from moving to tightly integrated GPU-CPU
systems. Instead, current applications designed for discrete
GPUs have great potential to be deployed without modification
on GPU clusters.
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