Characterization and Transformation of Unstructured Control Flow in GPU Applications

Haicheng Wu, Gregory Diamos, Si Li, and Sudhakar Yalamanchili
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA, USA
{hwu36, gregory.diamos, sli, sudha}@gatech.edu

ABSTRACT
Hardware and compiler techniques for mapping data-parallel programs with divergent control flow to SIMD architectures have recently enabled the emergence of new GPGPU programming models such as CUDA and OpenCL. Although this technology is widely used, commodity GPUs use different schemes to implement it, and the performance limitations of these different schemes under real workloads are not well understood.

This study identifies important classes of program control flows, and characterize their presence in real workloads. It is shown that most existing techniques handle structured control flow efficiently, some are incapable of executing unstructured control flow directly, and none handles unstructured control flow efficiently. A suggestion to reduce the impact of this problem is provided.

An unstructured-to-structured control flow transformation is implemented and its performance impact on a large class of GPU applications is assessed. The results quantify the importance of improving support for programs with unstructured control flow on GPUs. The transformation can also be used as a JIT compiler pass to execute programs with unstructured control flow on the GPU devices that do not support unstructured control flow. This is an important capability for execution portability of applications using GPU accelerators.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—Heterogeneous (hybrid) systems; D.3.3 [Programming Languages]: Language Constructs and Features—Control structures; D.3.4 [Programming Languages]: Processors—Run-time environments

General Terms
Experimentation, Performance

Keywords
GPU, Unstructured Control Flow, Branch Divergence

1. INTRODUCTION
The transition to many core computing has been accompanied by the emergence of heterogeneous architectures driven in large part by the major improvements in joules/operation and further influenced by the evolution to throughput-oriented computing. This has coincided with the growth of data parallel computation that has become a pervasive and powerful model of computation whose importance has been amplified by the rate at which raw data are being generated today in all sectors of the economy and growing in the foreseeable future. The emergence of low cost programmable GPU computing substrates from NVIDIA, Intel, and AMD have made data parallel architectures commodity from embedded systems through large scale clusters such as the Tsukuba [18] and Keeneland systems [2] hosting thousands of NVIDIA Fermi chips. Major research foci now include the development of programming models, algorithms, applications, performance analysis tools, productivity tools, and system software stacks.

Emerging data-parallel languages that implement single instruction stream multiple thread (SIMT) models [23] such as CUDA and OpenCL retain many of the control flow abstractions found in modern high level languages and simplify the task of programming these architectures. However, when the SIMT threads do not follow the same control path, performance suffers through poor hardware utilization and dynamic code expansion. This problem of branch divergence is critical to high performance and has attracted hardware and software support. The impact of branch divergence can be quite different depending upon whether the program’s control flow is structured (control blocks have single entry and single exit such as if-then-else) or unstructured (control blocks have multiple entries or exits such as those using goto statements). In fact some GPUs will only support (and hence their compilers will only generate) structured control flow. Therefore it becomes important to understand the impact of unstructured control flow in GPU applications and performance effects of mitigating the negative impact. This understanding is critical to developing new techniques to execute program with unstructured control flows more efficiently in GPUs, which may lead to the support of some advanced features in GPGPU programming such as try/catch that were once inefficient on SIMD processors. Moreover, some highly unstructured applications such as ray tracing can also gain benefits from these kinds of techniques when running on GPUs.

A second reason for understanding the impact of unstructured control flow is the use of dynamic translation in supporting multiple GPU back-ends [7]. Having an on-die accelerator (such as GEN6 in Intel’s Sandy Bridge) and an external high performance accelerator (such as AMD or NVIDIA GPU) will be a common configuration. The ability to execute a GPU kernel on either target to maximize performance is a desirable (and feasible) capability. Transformations between unstructured and structured control flow implementations are necessary when one of the GPUs does not naturally support unstructured control flow, e.g., AMD Radeon [8]. Such transformations are necessary for true execution portability via dynamic translation.

In this paper we seek to analyze the occurrence and impact of unstructured control flow in GPU kernels. This paper makes the following contributions:

- Assesses the occurrence of unstructured control flow in several GPU benchmark suites.
structured control flow: (a) code segment and (b) CFG having unstructured control flow, and (c) CFG after the Forward Copy transformation

- Establishes that unstructured control flow necessarily causes dynamic and static code expansion for state of the art hardware and compiler schemes. It shows that this code expansion can degrade performance in cases that do occur in real applications.

- Implements an compiler intermediate representation (IR) level transformation which can transform unstructured control flow to a structured control flow implementation. This transformation is useful for researching the performance of arbitrary control flows on GPUs, and also important for execution portability via dynamic translation.

The rest of the paper is organized as follows: Section 2 introduces unstructured control flow and its specific manifestations in GPU codes. Section 3 describes transformations for converting unstructured control flow to structured control flow. The experimental evaluation section, Section 4, assesses the impact of the transformations on several benchmark suites. The paper concludes with some general observations and directions for future work.

2. GPU CONTROL FLOW SUPPORT

Compilers can translate high level imperative languages such as C/C++ or Java into an intermediate representation (IR) that resembles a low level instruction set. Typical examples of IR are LLVM [16], PTX [20] (CUDA GPU), or AMD IL [1] (AMD GPU). In the IR level, the Control Flow Graph (CFG) represents the execution path of the program. Every node of the graph is a group of sequentially executed instructions, and the edges are the jumps which are usually caused by conditional/unconditional branches.

Zhang and Hollander [25] classify control flow patterns into two categories, structured and unstructured. In general, commonly used control flow patterns (if-then-else, for-loop, do-while-loop, etc.) are structured. These patterns correspond to hammock graphs in the CFG which are defined as subgraphs having a single entry node and a single exit node [10]. On the contrary, unstructured control flow may have multiple entries or exits. Based on the classification, Zhang et al. introduced a generic approach to transform graphs with unstructured control flow to graphs possessing structured control flow. This transformation will be explained in section 3. The remainder of this section introduces the common sources of unstructured control flows and how this is supported in SIMT architectures.

2.1 Sources of Unstructured Control Flow

One of the most common sources is the goto statement used in C/C++ which allows control flow to jump to arbitrary nodes in the CFG. Similarly, longjumps and exceptions are two other sources of unstructured control flow.

However, even if the programming language forbids the use of goto statements (such as OpenCL), the compiler may also produce unstructured control flow in the IR level due to unintended side-effects of the language semantics. For example, in the code segment of Figure 1(a), the compiler does not need to evaluate all four conditions (which is known as a short-circuit optimization) and the CFG of the generated IR looks like Figure 1(b). This CFG has unstructured control flow because subgraph {B1, B2} and {B3, B4} both have two exits.

Moreover, CFG optimizations performed by compilers would also cause unstructured control flow [6]. Considering Figure 2(a), if function foo() is inlined into the main() function, the early return statement in loop2 would create the second exit from the loop, which is shown in Figure 2(b).

Since the above sources are very common in modern programming languages, normal programs usually have both the structured and unstructured control flows. If the system cannot execute unstructured parts efficiently, it would hurt the overall performance.

2.2 Impact of Branch Divergence in Modern GPUs

Modern programmable GPUs implement massively data parallel execution models. In this paper we analyze GPU kernels from CUDA applications compiled to NVIDIA’s parallel thread execution (PTX) virtual instruction set architecture. PTX defines an execution model where an entire application is composed of a series of multi-threaded kernels. Kernels are composed of parallel work-units called Cooperative Thread Arrays (CTAs), each of which can be executed in any order subject to an implicit barrier between kernel launches. Threads within a CTA are grouped together into log-
It executes all the possible paths of the program (tions such as IF, ELSE, ENDIF, LOOP, ENDLOOP, etc., which
In AMD GPUs, the IR language (AMD IL) uses explicit instruc-
threads which may then re-converge later in the execution.

Since threads within the same warp have to execute the same instructions, branch control flow can potentially cause inefficiencies if the branch condition is not evaluated identically across all threads in a warp. In this case, some threads may take fall-through edge and the others may jump to the branch target, which is referred to as branch divergence. This can be handled by a process of serially enabling/disabling threads corresponding to the then/else branch. This effectively splits the warp into smaller subsets of threads which may then re-converge later in the execution.

The implementation details of re-convergence differ between GPUs. In AMD GPUs, the IR language (AMD IL) uses explicit instructions such as IF, ELSE, ENDF, LOOP, ENDDO, etc., which means it only supports limited structured control flows [2]. The mapping of these control flows to the hardware is simple and fixed. It executes all the possible paths of the program (then part and else part for IF instructions) in a lock-step way, and threads re-converge at the END instructions such as ENDF or ENDDO. If the compound condition code in Figure 1(a) is compiled for AMD GPUs, it has to generate CFG like Figure 1(c) which uses nested if-then-else to form a structured control flow. The Intel GEN5 graphics processors work in a similar manner [14].

However, mapping parallel programs with arbitrary control flows onto SIMD units is a difficult problem, because there is generally no guarantee that different parallel threads will ever be executing the same instructions. Thus, the re-convergence point may impact the overall performance. This will be discussed in the following subsection.

2.3 Unstructured Control Flow on GPUs

Although supporting structured control flow is sufficient for many graphics shading languages such as Microsoft DirectX and Khronos OpenGL, the migration to general purpose models such as OpenCL and CUDA that derive from C makes it advantageous to support unstructured control flow. Specifically, CUDA supports goto state-
ments in the high level language. In addition its IR language, PTX, has many features in common with RISC ISAs, which support arbitrary branch instructions rather than explicit IF and LOOP instructions. Consequently as discussed in Section 2.1, compilation of CUDA programs can employ common CFG optimizations that are already widely used in other C/C++ program compilation frameworks and programmers do not need to worry about introducing unstructured control flow into programs that are not allowed on some GPU platforms.

The current state of the practice in determining re-convergence points for divergent SIMD threads is referred to as immediate post-dominator re-convergence [11] (the immediate post-dominator of a branch in a CFG, informally, is the node through which all paths from the branch pass through and which does not post-dominator any other post dominator). By using this method, the re-convergence point is fixed for every divergent branch and can be calculated statically during compilation. For structured control flow, this method would re-converge at the end of loops or if-else-endif control blocks, which are as efficient as AMD GPUs. However, it may execute inefficiently for unstructured control flow. For example, in Figure 3, assume the warp size is 7 and these 7 threads take 7 different paths as shown in Figure 3(b), which is the worst case for this CFG. The immediate post-dominator of all branches is the exit node (see Figure 3(a)). Figure 3(c) shows how the SIMD unit executes these seven threads for re-converging at the immediate post-dominator. There are many empty slots in this figure and on average only 3.25 threads are enabled. It is also interesting to notice that the execution of CFG like Figure 1(c) is the same as Figure 3(c), which means AMD GPUs are also inefficient for this example.

Dynamic code expansion occurs when different paths originating from a divergent branch pass through common basic blocks before the re-convergence point. For example, in Figure 3(c), time slot 7 to 11 are running dynamically expanded code because B3, B4 and B5 have been already executed in time slot 4, 5 and 6.

The solution that reduces dynamic code expansion is to re-converge as early as possible. Figure 3(d) is an example where re-convergence happens much earlier than the immediate post-dominator. It saves execution time and has much better hardware resource occupancy. The inefficiency of re-converge at immediate post-dominator exac-
erates the problem of branch divergence. To achieve performance improvements as shown in Figure 3(d), the compiler should be capable of identifying the potential early re-converge points and inserting necessary check instructions. It also needs the support from hardware to efficiently compare the program counter (PC) of each thread to check for re-convergence. To our best knowledge, there is still no technology that can achieve the efficiency shown in this example and thus there is still a lot of room for improvement in executing unstructured control flow in SIMD processors. If unstructured control flow can be handled more efficiently, some new language semantics, such as C++ try/catch style exceptions, can be added to the current programming model. Furthermore, if hardware can support unstructured control flow efficiently, compilers do not have to generate structured control flow like Figure 1(c). This can reduce the penalty caused by branch divergence.

2.4 Executing Arbitrary Control Flow on GPUs

Consequently, there are three ways to run programs with arbitrary control flows on different GPU platforms in an efficient (and hence portable) manner:

- The simplest method is to let compilers have the option to produce IR code only containing structured control flows. This IR code then can be compiled into different back-ends. This method may miss some optimization opportunities, but it is simplest to implement.

- Use a JIT compiler to dynamically transform the unstructured control flow to structured control flow online when necessary, i.e., the target GPU does not support unstructured control flow. The dynamic compilation may introduce some inevitable overhead.

- The most promising method is to develop a new technology (both compiler and hardware support) to replace current approaches to fully utilize the early re-convergence opportunity that is illustrated in Figure 3(d).

This paper presents a compiling technique to transform the unstructured control flow to structured control flow in Section 3.

3. CONTROL FLOW TRANSFORMATIONS

The principal result of Zhang’s work is that the repeated application of three primary transformations can provably convert all possible unstructured programs into a structured format. However, their technique only applies to the programming language level instead of the IR level. To do the similar transformations in the IR level, some extra work is needed and the three original transformations have to be adapted.

The basic process has three steps:

1. Identify unstructured branches and some basic structured control flow patterns in the CFG, including if-then, if-then-else, self-loop, for-loop, and do-while loop,

2. Collapse the detected structured control flow pattern into a single node.

3. Use three sub transformations, which will be introduced here, to turn all detected unstructured control flow into structured control flow,

This process runs iteratively until there is only one node remaining.

The output of Step 1 is a control tree [19], which basically describes the components of all control flow patterns and their nested structures. Figure 4 shows a CFG and its control tree. It should be noticed that all unstructured control flows are detected in this step.

![Figure 4: Example of (a) a simple CFG and (b) its Control Tree](image)

Afterwards, the three transformations are performed repeatedly with the help of the control tree to transform the unstructured control flow. These transformations are conceptually and functionally equivalent to the ones used in Zhang’s work [25] (the detailed algorithm and correctness proof can be found in their original work) and can be explained through the application of three primitive transformations.

- **Cut**: The Cut transformation moves the outgoing edge of a loop to the outside of the loop. For example, the loop in Figure 5(a) has two unstructured outgoing edges, E1 and E2. What cut transformations do is i) use three flags to label the location of the loop exits; ii) combine all exit edges to a single exit edge; iii) use three conditional checks to find the correct code to execute after the loop. It should be noted that after the transformation, the CFG in this example is still unstructured and needs other transformations to make it structured.

- **Backward Copy**: Backward Copy moves the incoming edges of a loop to the outside of the loop. For instance, Figure 6(a) has an unstructured incoming edge E1 into the loop. To transform it, the backward copy uses the loop peeling technique to unravel the first iteration of the loop and point all incoming edges to the peeled part. In this example, the CFG after the transformation is also unstructured. This transformation is rarely needed (see the experiment part in Section 4) because usually neither programers nor compilers would create loops with multiple entries.
4. EXPERIMENTAL EVALUATION

This section evaluates how often unstructured control flows are used in real GPU programs and how they may impact the performance over a large collection of CUDA benchmarks from CUDA SDK 3.2 [21], Parboil 2.0 [13], Rodinia 1.0 [5], Optix SDK 2.1 [22] and some third party applications. The CUDA SDK contains a large collection of simple GPU programs. Parboil benchmarks are compute intensive. Rodinia’s collection is chosen to represent different types of GPU parallel programs, which are more complex than those in the CUDA SDK. Optix SDK includes several ray tracing applications. The three third party GPU applications used are renderer [24] (a 3D renderer), sphy-phaena [3] (a SQL query Engine), and mcrad [9] (a radiative transport equation solver).

As for the compilation tools, NVCC 3.2 is used to compile CUDA programs to PTX code. Optix SDK benchmarks are running under Optix’s own execution engine. A GPU compilation infrastructure, Ocelot 1.2.807 [7], is used for several other purposes: back-end code generation, PTX transformation, functional emulation, trace generation and performance analysis.

4.1 Static Characterization

The first set of experiments attempts to characterize the existence of certain types of control flow in existing CUDA workloads by using the unstructured to structured transformations introduced in Section 3. The transformation is implemented as a static optimization pass in Ocelot and it is applied to the PTX code of all benchmarks. The optimization can detect unstructured control flow and classify them by the type of transformations used (Cut, Backward Copy, or Forward Copy). The correctness of the transformation is verified by comparing the output results of the original program and the transformed program. Table 1 shows the number of applications having unstructured control flow in four examined GPU benchmark suites. Out of the 113 applications examined, 27 contain unstructured control flow, indicating that at the very least an unstructured to structured compiler transformation is required to support general CUDA applications on all GPUs. It is also the case that more complex applications are more likely to include unstructured control flow. Almost half of the applications in the Rodinia and Optix include unstructured control flow.

Table 2 shows the usage of different transformations. The first column is the benchmark name. The second column is the number of branch instructions every benchmark has. The third to the fifth columns show the number of times each transformation is used for every benchmark. The statistics show that Backward Copy appears to be nonexistent in current workloads which follows the common practice that programmers rarely write a loop with multiple entries. Cut transformations are necessary in programs that involve loops, but the shallow levels of nesting of GPU programs, especially those simple programs, makes this operation less common. Forward transformations are used most often. Further research shows that short-circuiting is the main trigger of these transformations. As explained in Section 2.2, short-circuiting does not run efficiently on the GPU platform.

The sixth and seventh column of Table 2 is the static code size of the benchmarks before and after the transformation. Static Code size is calculated by counting the PTX instructions of the benchmark. Usually the larger its code size is, the more complex control flow the program may have and the more transformations it needs.

<table>
<thead>
<tr>
<th>Suite</th>
<th>Number of Benchmarks</th>
<th>Number of Transformed Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA SDK</td>
<td>56</td>
<td>4</td>
</tr>
<tr>
<td>Parboil</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Rodinia</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Optix</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1: Existence of unstructured control flows in different GPU benchmark suites
Table 2: Unstructured to structured transformation statistics

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Branch Instruction</th>
<th>Cut</th>
<th>Forward Copy</th>
<th>Backward Copy</th>
<th>old code size</th>
<th>new code size</th>
<th>Static Code Expansion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA SDK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mergeSort</td>
<td>160</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1914</td>
<td>1946</td>
<td>1.67</td>
</tr>
<tr>
<td>particles</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>772</td>
<td>790</td>
<td>2.33</td>
</tr>
<tr>
<td>Mandelbrot</td>
<td>340</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>3470</td>
<td>4072</td>
<td>17.35</td>
</tr>
<tr>
<td>eigenValues</td>
<td>431</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4459</td>
<td>4519</td>
<td>1.35</td>
</tr>
<tr>
<td>PARBOIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfs</td>
<td>65</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>684</td>
<td>689</td>
<td>0.73</td>
</tr>
<tr>
<td>mri-fhd</td>
<td>163</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1979</td>
<td>1984</td>
<td>0.25</td>
</tr>
<tr>
<td>tpacf</td>
<td>37</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>476</td>
<td>499</td>
<td>4.83</td>
</tr>
<tr>
<td>RODINIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heartwall</td>
<td>144</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1683</td>
<td>1701</td>
<td>1.07</td>
</tr>
<tr>
<td>hotspot</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>237</td>
<td>242</td>
<td>2.11</td>
</tr>
<tr>
<td>particlefilter naive</td>
<td>29</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>155</td>
<td>203</td>
<td>30.97</td>
</tr>
<tr>
<td>particlefilter_float</td>
<td>132</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1524</td>
<td>1566</td>
<td>2.76</td>
</tr>
<tr>
<td>mummergpu</td>
<td>92</td>
<td>2</td>
<td>26</td>
<td>0</td>
<td>1112</td>
<td>2117</td>
<td>90.38</td>
</tr>
<tr>
<td>srad_v1</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>572</td>
<td>595</td>
<td>4.02</td>
</tr>
<tr>
<td>Myocyte</td>
<td>4452</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>54993</td>
<td>62800</td>
<td>14.20</td>
</tr>
<tr>
<td>Cell</td>
<td>74</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>507</td>
<td>512</td>
<td>0.99</td>
</tr>
<tr>
<td>PathFinder</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>136</td>
<td>141</td>
<td>3.68</td>
</tr>
<tr>
<td>OPTIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glass</td>
<td>157</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4385</td>
<td>4892</td>
<td>11.56</td>
</tr>
<tr>
<td>julia</td>
<td>1634</td>
<td>14</td>
<td>22</td>
<td>0</td>
<td>14097</td>
<td>18191</td>
<td>29.04</td>
</tr>
<tr>
<td>mcmc_sampler</td>
<td>101</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4225</td>
<td>4702</td>
<td>11.29</td>
</tr>
<tr>
<td>whirligig</td>
<td>143</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>4533</td>
<td>5303</td>
<td>16.99</td>
</tr>
<tr>
<td>whitted</td>
<td>173</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5389</td>
<td>5841</td>
<td>8.39</td>
</tr>
<tr>
<td>zoneplate</td>
<td>297</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3397</td>
<td>3400</td>
<td>0.09</td>
</tr>
<tr>
<td>collision</td>
<td>101</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2585</td>
<td>2595</td>
<td>0.39</td>
</tr>
<tr>
<td>progressivePhotonMap</td>
<td>127</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3905</td>
<td>3960</td>
<td>1.41</td>
</tr>
<tr>
<td>path_trace</td>
<td>29</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1870</td>
<td>1875</td>
<td>0.27</td>
</tr>
<tr>
<td>heightfield</td>
<td>46</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1761</td>
<td>1771</td>
<td>0.57</td>
</tr>
<tr>
<td>swimmingShark</td>
<td>51</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1990</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>mcrad</td>
<td>415</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>4552</td>
<td>5238</td>
<td>15.07</td>
</tr>
<tr>
<td>sphyraena</td>
<td>1125</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>4393</td>
<td>4418</td>
<td>0.57</td>
</tr>
<tr>
<td>Renderer</td>
<td>7148</td>
<td>943</td>
<td>179</td>
<td>0</td>
<td>70176</td>
<td>111540</td>
<td>58.94</td>
</tr>
</tbody>
</table>

Benchmarks that have one Cut and zero Forward Copy, such as path_trace and heightfield, show that the number of instructions inserted by Cut is small. However, this is not the case for the Forward Copy. In the benchmark mummergpu, its code size was doubled by 26 Forward Copy transformations. The code size increment caused by Forward Copy depends on the size of the shared CFG nodes that need to be duplicated. Column eight is the relative static code expansion. Figure 7 shows the code expansion of those benchmarks using at least one Forward Copy with an average of 14.76%. For those benchmarks having a large number of transformations, such as mummergpu, julia, and Renderer, the static code expansion is significant.

Among all the benchmarks, Renderer has far more transformations than the rest. Other graphics benchmarks (particles, Mandelbrot, Optix SDK suite) also have more unstructured control flow on average. It is fair to say that graphics applications have great potential to improve performance if unstructured control flow could be handled more efficiently.

4.2 Dynamic Characterization

Since a better technology to run unstructured control flows is unknown, we cannot get an accurate performance impact of re-convergence at immediate post-dominator. However, we can use the functional emulator provided by Ocelot to count the number of
In this experiment, we first determined which basic blocks (CFG nodes) form the unstructured control flow from our static transformation. These basic blocks might be dynamically expanded at run-time (like B3, B4, and B5 in Figure 3(a)). Then, we used the emulator to count the number of times these basic blocks will run in a divergent warp. For example, in Figure 3(c), B3 and B4 each runs twice in the divergent warp and B5 runs four times. Assuming each basic block has 1 instruction, we can say at most 8 instructions which are executed in time slots 4–11 may miss the early re-convergence (actual number of dynamic expanded instructions is 5, executed in time slots 7–11). Although this method overestimates the performance degradation, the overestimated part is limited to the initial execution of these instructions as they should not be counted. Take Figure 3(c) as an example, the overestimated part is time slots 4–6 during which B3, B4 and B5 are executed for the first time.

Table 3 shows the upper limit of dynamic code expansion for benchmarks using Forward Copy. Some benchmarks are not included due to the issues of the emulator. The results vary greatly. Some benchmarks, such as particles and mergeSort, have very low value because the unstructured part is executed infrequently or warps do not diverge when executing them. However, other benchmarks, such as mummergpu and tpacf, have a significant value meaning the application repeatedly executes these unstructured control flows. In this case, not having earlier re-convergence will impact the performance significantly. It is also interesting to notice that benchmark tpacf has low static code expansion but high dynamic code expansion, which means the unstructured part is executed very frequently.

4.3 Case Study

In this experiment, we modified the Ocelot emulator and rewrote the mummergpu benchmark to force it to re-converge as early as possible. The benchmark rewriting includes adjusting the PTX code layout, so re-convergence points appear at the earliest point like B3 appears after B1 and B2 in Figure 3(d). We measured the dynamic instruction count (instructions dynamically executed by all threads) of two mechanisms: re-converging at immediate post-dominator and re-converging at the earliest point. The result shows that re-converging at earliest place can reduce 14.2% (from 53616778 to 46008916) dynamic instructions, which further demonstrates that it is a promising research area.

5. RELATED WORK

SIMD architectures have been designed with basic support for control flow since their large-scale deployment in the 1960s. Since that time, new designs have been incrementally augmented with compiler-assisted hardware support for non-nested structured control flow and eventually all hammock graphs [25]. These designs have culminated in support for all forms of unstructured control flow without any static code expansion.

ILLIAC IV [4], which is in general considered to be the first large-scale SIMD supercomputer, was designed around the concept of a control processor that maintained a series of predicate bits, one for each SIMD lane. Its instruction set could be used to set the predicate bits to implement simple common structured control flows such as if-then-else blocks and loops.

The primary limitation of a single predicate register is its inability to handle programs with nested control flow. In 1982 the CHAP [17] graphics processor introduced the concept of a stack of predicate registers to address this problem. CHAP includes explicit instructions for if, else, endif, do, while statements in the high level language. This is currently the most popular method of supporting control flow on SIMD processors and is also used by the AMD Evergreen and Intel GEN5 graphics processors.

To support unstructured control flow, a technique refer to as immediate post-dominator re-convergence is developed, which extends the concept of a predicate stack to support programs with arbitrary control flow. This is done by finding the immediate post-dominator for all potentially divergent branch and inserting an explicit re-converge instruction. During execution, predicate registers are pushed onto the stack on divergent branches and popped when re-convergence points are hit. In order to resume execution after all paths have reached the post-dominator, the program counter of the warp executing the branch is adjusted to the instruction immediately after the re-converge point.

All of the previous techniques have been implemented in commercial SIMD processors. Dynamic warp formation is a technique originally described by Fung et al. [11] that increases the efficiency of immediate post-dominator re-convergence by migrating threads between warps if they are executing the same instruction. However, the power and hardware complexity to support detecting this and dynamically creating a new warp from a pool of threads at the same PC, which requires fully associative PC comparisons across
active warps every cycle and register file changes may outweigh the performance advantages. Like post-dominator re-convergence, this scheme supports all program control flow.

As to the area of GPU application characterization, Kerr et al. [15] and Goswami et al. [12] respectively characterized a large of of GPU benchmarks by using a wide range of metrics covering control flow, data flow, parallelism, and memory behaviors. Goswami also researched the similarities between different benchmarks. Their studies are valuable for future GPU compilation and microarchitecture design. Instead, our work focuses on the execution of unstructured control flow in GPUs and provides insight, characterizations, and suggestions for future GPU designs.

6. CONCLUSIONS
This work addresses the problem of running arbitrary programs on any GPU device. The current state of practice is not satisfactory, since the support of unstructured control flow is very poor. Some GPU devices do not support unstructured control flow at all, while others do not support it efficiently because they will miss the earliest re-convergence point. We propose an IR level control flow transformation that can turn an unstructured control flow into a structured one. This transformation is used to characterize the existence of unstructured control flow in a large number of benchmarks. The result verifies the importance of the problem. Further, the transformation is also useful in the dynamic compiler used in a heterogeneous system.

In the future, we will focus on automatically finding earliest re-convergence points in an unstructured control flow by using different compiler and hardware techniques to improve execution efficiency of arbitrary programs on GPUs. At the same time, unstructured to structured transformation is also a useful technique. Its impact on the memory hierarchy deserves further research.

7. ACKNOWLEDGEMENTS
This research was supported by NSF under grants IIP-1032032, CCF-0905459, and OCI-0910735, by LogicBlox Corporation, and equipment grants from NVIDIA Corporation. We would also like to thank Andrew Kerr, Tri Pho and Naila Farooquie for helping us set up the experiments. Tips from the anonymous referees also greatly helped shape this paper.

8. REFERENCES