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ABSTRACT
Hardware and compiler techniques for mapping data-parallel pro-
grams with divergent control flow to SIMD architectures have re-
cently enabled the emergence of new GPGPU programming models
such as CUDA and OpenCL. Although this technology is widely
used, commodity GPUs use different schemes to implement it, and
the performance limitations of these different schemes under real
workloads are not well understood.

This study identifies important classes of program control flows,
and characterize their presence in real workloads. It is shown that
most existing techniques handle structured control flow efficiently,
some are incapable of executing unstructured control flow directly,
and none handles unstructured control flow efficiently. A sugges-
tion to reduce the impact of this problem is provided.

An unstructured-to-structured control flow transformation is im-
plemented and its performance impact on a large class of GPU
applications is assessed. The results quantify the importance of
improving support for programs with unstructured control flow on
GPUs. The transformation can also be used as a JIT compiler pass
to execute programs with unstructured control flow on the GPU
devices that do not support unstructured control flow. This is an
important capability for execution portability of applications using
GPU accelerators.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—Het-
erogeneous (hybrid) systems; D.3.3 [Programming Languages]:
Language Constructs and Features—Control structures; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environments

General Terms
Experimentation, Performance

Keywords
GPU, Unstructured Control Flow, Branch Divergence

1. INTRODUCTION
The transition to many core computing has been accompanied

by the emergence of heterogeneous architectures driven in large
part by the major improvements in joules/operation and further in-
fluenced by the evolution to throughput-oriented computing. This
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has coincided with the growth of data parallel computation that has
become a pervasive and powerful model of computation whose im-
portance has been amplified by the rate at which raw data are be-
ing generated today in all sectors of the economy and growing in
the foreseeable future. The emergence of low cost programmable
GPU computing substrates from NVIDIA, Intel, and AMD have
made data parallel architectures commodity from embedded sys-
tems through large scale clusters such as the Tsubame [18] and
Keeneland systems [?] hosting thousands of NVIDIA Fermi chips.
Major research foci now include the development of programming
models, algorithms, applications, performance analysis tools, pro-
ductivity tools, and system software stacks.

Emerging data-parallel languages that implement single instruc-
tion stream multiple thread (SIMT) models [23] such as CUDA
and OpenCL retain many of the control flow abstractions found in
modern high level languages and simplify the task of programming
these architectures. However, when the SIMT threads do not follow
the same control path, performance suffers through poor hardware
utilization and dynamic code expansion. This problem of branch
divergence is critical to high performance and has attracted hard-
ware and software support. The impact of branch divergence can
be quite different depending upon whether the program’s control
flow is structured (control blocks have single entry and single exit
such as if-then-else) or unstructured (control blocks have multiple
entries or exits such as those using goto statements). In fact some
GPUs will only support (and hence their compilers will only gen-
erate) structured control flow. Therefore it becomes important to
understand the impact of unstructured control flow in GPU appli-
cations and performance effects of mitigating the negative impact.
This understanding is critical to developing new techniques to ex-
ecute program with unstructured control flows more efficiently in
GPUs, which may lead to the support of some advanced features in
GPGPU programming such as try/catch that were once inefficient
on SIMD processors. Moreover, some highly unstructured applica-
tions such as ray tracing can also gain benefits from these kinds of
techniques when running on GPUs.

A second reason for understanding the impact of unstructured
control flow is the use of dynamic translation in supporting mul-
tiple GPU back-ends [7]. Having an on-die accelerator (such as
GEN6 in Intel’s Sandy Bridge) and an external high performance
accelerator (such as AMD or NVIDIA GPU) will be a common
configuration. The ability to execute a GPU kernel on either target
to maximize performance is a desirable (and feasible) capability.
Transformations between unstructured and structured control flow
implementations are necessary when one of the GPUs does not na-
tively support unstructured control flow, e.g., AMD Radeon [8].
Such transformations are necessary for true execution portability
via dynamic translation.

In this paper we seek to analyze the occurrence and impact of
unstructured control flow in GPU kernels. This paper makes the
following contributions:

• Assesses the occurrence of unstructured control flow in sev-
eral GPU benchmark suites.



If (cond1() || cond2()
   && (cond3() || cond4()))
{
…
}

B1
bra cond1()

B2
bra cond2()

B3
bra cond3()

B4
bra cond4()

B5
…

entry

exit

B1
bra cond1()

B2
bra cond2()

B3
bra cond3()

B4
bra cond4()

B5
…

entry

exit

B5'
…

B3'
bra cond3()

B4'
bra cond4()

B5''
…

B5'''
…

(a)

(b)

(c)

Figure 1: Example showing a compound condition that creates
unstructured control flow: (a) code segment, (b) CFG having
unstructured control flow, and (c) CFG after the Forward Copy
transformation

• Establishes that unstructured control flow necessarily causes
dynamic and static code expansion for state of the art hard-
ware and compiler schemes. It shows that this code expan-
sion can degrade performance in cases that do occur in real
applications.

• Implements an compiler intermediate representation (IR) level
transformation which can transform unstructured control flow
to a structured control flow implementation. This transfor-
mation is useful for researching the performance of arbitrary
control flows on GPUs, and also important for execution porta-
bility via dynamic translation.

The rest of the paper is organized as follows: Section 2 intro-
duces unstructured control flow and its specific manifestations in
GPU codes. Section 3 describes transformations for converting un-
structured control flow to structured control flow. The experimental
evaluation section, Section 4, assesses the impact of the transforma-
tions on several benchmark suites. The paper concludes with some
general observations and directions for future work.

2. GPU CONTROL FLOW SUPPORT
Compilers can translate high level imperative languages such as

C/C++ or Java into an intermediate representation (IR) that resem-
bles a low level instruction set. Typical examples of IR are LLVM [16]
, PTX [20] (CUDA GPU), or AMD IL [1] (AMD GPU). In the IR
level, the Control Flow Graph (CFG) represents the execution path
of the program. Every node of the graph is a group of sequentially
executed instructions, and the edges are the jumps which are usu-
ally caused by conditional/unconditional branches.

Zhang and Hollander [25] classify control flow patterns into two
categories, structured and unstructured. In general, commonly used
control flow patterns (if-then-else, for-loop, do-while-loop, etc.) are
structured. These patterns correspond to hammock graphs in the
CFG which are defined as subgraphs having a single entry node
and a single exit node [10]. On the contrary, unstructured con-
trol flow may have multiple entries or exits. Based on the classi-

inline void foo() {
loop2:
  for(...) {
    if(...)    return;
    ...  
  }
}

int main() {
loop1:
   for(...) {
    foo();
    ..
  }
}

loop1 loop2

if(...)return

(a) (b)

Figure 2: Example showing function inlining that creates un-
structured control flow: (a) code segment and (b) CFG having
unstructured control flow

fication, Zhang et al. introduced a generic approach to transform
graphs with unstructured control flow to graphs possessing struc-
tured control flow. This transformation will be explained in section
3. The remainder of this section introduces the common sources
of unstructured control flows and how this is supported in SIMT
architectures.

2.1 Sources of Unstructured Control Flow
One of the most common sources is the goto statement used in

C/C++ which allows control flow to jump to arbitrary nodes in the
CFG. Similarly, longjumps and exceptions are two other sources of
unstructured control flow.

However, even if the programming language forbids the use of
goto statements (such as OpenCL), the compiler may also produce
unstructured control flow in the IR level due to unintended side-
effects of the language semantics. For example, in the code seg-
ment of Figure 1(a), the compiler does not need to evaluate all four
conditions (which is known as a short-circuit optimization) and the
CFG of the generated IR looks like Figure 1(b). This CFG has un-
structured control flow because subgraph {B1, B2} and {B3, B4}
both have two exits.

Moreover, CFG optimizations performed by compilers would
also cause unstructured control flow [6]. Considering Figure 2(a),
if function foo() is inlined into the main() function, the early re-
turn statement in loop2 would create the second exit from the loop,
which is shown in Figure 2(b).

Since the above sources are very common in modern program-
ming languages, normal programs usually have both the structured
and unstructured control flows. If the system cannot execute un-
structured parts efficiently, it would hurt the overall performance.

2.2 Impact of Branch Divergence in Modern
GPUs

Modern programmable GPUs implement massively data paral-
lel execution models. In this paper we analyze GPU kernels from
CUDA applications compiled to NVIDIA’s parallel thread execu-
tion (PTX) virtual instruction set architecture. PTX defines an ex-
ecution model where an entire application is composed of a series
of multi-threaded kernels. Kernels are composed of parallel work-
units called Cooperative Thread Arrays (CTAs), each of which can
be executed in any order subject to an implicit barrier between ker-
nel launches. Threads within a CTA are grouped together into log-
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Figure 3: Example of mapping unstructured control flow into a SIMD unit: (a) unstructured CFG, (b) execution path, (c) re-converge
at immediate post-dominator, and (d) re-converge at the earliest point

ical units known as warps that are mapped to single instruction
stream multiple data (SIMD) units using a combination of hard-
ware support for predication, a thread context stack, and compiler
support for identifying re-converge points at control-independent
code.

Since threads within the same warp have to execute the same
instructions, branch control flow can potentially cause inefficien-
cies if the branch condition is not evaluated identically across all
threads in a warp. In this case, some threads may take fall-through
edge and the others may jump to the branch target, which is re-
ferred to as branch divergence. This can be handled by a process of
serially enabling/disabling threads corresponding to the then/else
branch. This effectively splits the warp into smaller subsets of
threads which may then re-converge later in the execution.

The implementation details of re-convergence differ between GPUs.
In AMD GPUs, the IR language (AMD IL) uses explicit instruc-
tions such as IF, ELSE, ENDIF, LOOP, ENDLOOP, etc., which
means it only supports limited structured control flows [2]. The
mapping of these control flows to the hardware is simple and fixed.
It executes all the possible paths of the program (then part and else
part for IF instructions) in a lock-step way, and threads re-converge
at the END instructions such as ENDIF or ENDLOOP. If the com-
pound condition code in Figure 1(a) is compiled for AMD GPUs,
it has to generate CFG like Figure 1(c) which uses nested if-then-
else to form a structured control flow. The Intel GEN5 graphics
processors work in a similar manner [14].

However, mapping parallel programs with arbitrary control flows
onto SIMD units is a difficult problem, because there is generally
no guarantee that different parallel threads will ever be executing
the same instructions. Thus, the re-convergence point may impact
the overall performance. This will be discussed in the following
subsection.

2.3 Unstructured Control Flow on GPUs
Although supporting structured control flow is sufficient for many

graphics shading languages such as Microsoft DirectX and Khronos
OpenGL, the migration to general purpose models such as OpenCL
and CUDA that derive from C makes it advantageous to support
unstructured control flow. Specifically, CUDA supports goto state-

ments in the high level language. In addition its IR language, PTX,
has many features in common with RISC ISAs, which support arbi-
trary branch instructions rather than explicit IF and LOOP instruc-
tions. Consequently as discussed in Section 2.1, compilation of
CUDA programs can employ common CFG optimizations that are
already widely used in other C/C++ program compilation frame-
works and programmers do not need to worry about introducing un-
structured control flow into programs that are not allowed on some
GPU platforms.

The current state of the practice in determining re-convergence
points for divergent SIMD threads is referred to as immediate post-
dominator re-convergence [11] (the immediate post-dominator of
a branch in a CFG, informally, is the node through which all paths
from the branch pass through and which does not post-dominate any
other post dominator). By using this method, the re-converge point
is fixed for every divergent branch and can be calculated statically
during compilation. For structured control flow, this method would
re-converge at the end of loops or if-else-endif control blocks, which
are as efficient as AMD GPUs. However, it may execute ineffi-
ciently for unstructured control flow. For example, in Figure 3,
assume the warp size is 7 and these 7 threads take 7 different paths
as shown in Figure 3(b), which is the worst case for this CFG. The
immediate post-dominator of all branches is the exit node (see Fig-
ure 3(a)). Figure 3(c) shows how the SIMD unit executes these
seven threads for re-converging at the immediate post-dominator.
There are many empty slots in this figure and on average only 3.25
threads are enabled. It is also interesting to notice that the exe-
cution of CFG like Figure 1(c) is the same as Figure 3(c), which
means AMD GPUs are also inefficient for this example.

Dynamic code expansion occurs when different paths originating
from a divergent branch pass through common basic blocks before
the re-convergence point. For example, in Figure 3(c), time slot 7
to 11 are running dynamically expanded code because B3, B4 and
B5 have been already executed in time slot 4, 5 and 6.

The solution that reduces dynamic code expansion is to re-converge
as early as possible. Figure 3(d) is an example where re-convergence
happens much earlier than the immediate post-dominator. It saves
execution time and has much better hardware resource occupancy.
The inefficiency of re-converge at immediate post-dominator exac-



erbates the problem of branch divergence. To achieve performance
improvements as shown in Figure 3(d), the compiler should be ca-
pable of identifying the potential early re-converge points and in-
serting necessary check instructions. It also needs the support from
hardware to efficiently compare the program counter (PC) of each
thread to check for re-convergence. To our best knowledge, there
is still no technology that can achieve the efficiency shown in this
example and thus there is still a lot of room for improvement in
executing unstructured control flow in SIMD processors. If un-
structured control flow can be handled more efficiently, some new
language semantics, such as C++ try/catch style exceptions, can be
added to the current programming model. Furthermore, if hardware
can support unstructured control flow efficiently, compilers do not
have to generate structured control flow like Figure 1(c). This can
reduce the penalty caused by branch divergence.

2.4 Executing Arbitrary Control Flow on GPUs
Consequently, there are three ways to run programs with arbi-

trary control flows on different GPU platforms in an efficient (and
hence portable) manner:

• The simplest method is to let compilers have the option to
produce IR code only containing structured control flows.
This IR code then can be compiled into different back-ends.
This method may miss some optimization opportunities, but
it is simplest to implement.

• Use a JIT compiler to dynamically transform the unstructured
control flow to structured control flow online when neces-
sary, i.e., the target GPU does not support unstructured con-
trol flow. The dynamic compilation may introduce some in-
evitable overhead.

• The most promising method is to develop a new technology
(both compiler and hardware support) to replace current ap-
proaches to fully utilize the early re-convergence opportunity
that is illustrated in Figure 3(d).

This paper presents a compiling technique to transform the un-
structured control flow to structured control flow in Section 3.

3. CONTROL FLOW TRANSFORMATIONS
The principal result of Zhang’s work is that the repeated appli-

cation of three primary transformations can provably convert all
possible unstructured programs into a structured format. However,
their technique only applies to the programming language level in-
stead of the IR level. To do the similar transformations in the IR
level, some extra work is needed and the three original transforma-
tions have to be adapted.

The basic process has three steps:

1. Identify unstructured branches and some basic structured con-
trol flow patterns in the CFG, including if-then, if-then-else,
self-loop, for-loop, and do-while loop,

2. Collapse the detected structured control flow pattern into a
single node.

3. Use three sub transformations, which will be introduced here,
to turn all detected unstructured control flow into structured
control flow,

This process runs iteratively until there is only one node remain-
ing.

The output of Step 1 is a control tree [19], which basically de-
scribes the components of all control flow patterns and their nested
structures. Figure 4 shows a CFG and its control tree. It should be
noticed that all unstructured control flows are detected in this step.

entry

B1

B3

B4

exit

{entry, B1—B4, exit}: Block

{entry}: Block

{B1—B4}: Do-While Loop

{exit}: Block

{B1—B3}: Unstructred {B4}: Block

{B1}: Block {B3}: Self-Loop

{B3}: Block

(a) (b)

B2
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Figure 4: Example of (a) a simple CFG and (b) its Control Tree
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goto B8
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 flag1 = exit = true;  flag2 = exit = true;

 exit = true;

If(exit == false)
goto B2;

(a) (b)

Figure 5: Example of a Cut transformation: (a) unstructured
CFG (b) CFG after Cut transformation

Afterwards, the three transformations are performed repeatedly
with the help of the control tree to transform the unstructured con-
trol flow. These transformations are conceptually and functionally
equivalent to the ones used in Zhang’s work [25] (the detailed algo-
rithm and correctness proof can be found in their original work) and
can be explained through the application of three primitive transfor-
mations.

• Cut: The Cut transformation moves the outgoing edge of a
loop to the outside of the loop. For example, the loop in
Figure 5(a) has two unstructured outgoing edges, E1 and E2.
What cut transformations do is i) use three flags to label the
location of the loop exits; ii) combine all exit edges to a single
exit edge; iii) use three conditional checks to find the correct
code to execute after the loop. It should be noted that after the
transformation, the CFG in this example is still unstructured
and needs other transformations to make it structured.

• Backward Copy: Backward Copy moves the incoming edges
of a loop to the outside of the loop. For instance, Figure 6(a)
has an unstructured incoming edge E1 into the loop. To trans-
form it, the backward copy uses the loop peeling technique to
unravel the first iteration of the loop and point all incoming
edges to the peeled part. In this example, the CFG after the
transformation is also unstructured. This transformation is
rarely needed (see the experiment part in Section 4) because
usually neither programers nor compilers would create loops
with multiple entries.



B1

B2

B3

B4

B5

E1

B1

B2

B3

B4

B5 B3'

B4'

B5'

B6

B6

(a) (b)

Figure 6: Example of a Backward Copy transformation

• Forward Copy: Forward Copy handles the unstructured con-
trol flow in the acyclic CFG. After Cut and Backward Copy
transformations, there are no unstructured edges coming into
or going out of loops. As a consequence, CFGs inside ev-
ery loop can be handled individually and all structured loops
can be collapsed into abstract single CFG nodes. Forward
Copy eliminates all remaining unstructured branches by du-
plicating their target CFG nodes. For example, in Figure 1(b),
B5 needs to be duplicated because edge B4->B5 is unstruc-
tured. If Forward Copy is performed multiple times, some
subgraphs may be duplicated more than once and it may even-
tually lead to exponential code expansion. The final result
shown in Figure 1(c) duplicates B5 three times and duplicates
B4 and B3 once respectively. Actually, Figure 1(c) spans all
possible paths between the entry node and the exit node.

Comparing Figure 1(c) and Figure 3(c), it is interesting to see
that the dynamically expanded code caused by re-convergence
at the immediate post-dominator is exactly the same as the
duplicated code in Forward Copy. This is not a coincidence.
In fact Forward Copy can be used to measure the worst case
of dynamic code expansion in immediate post-dominator re-
convergence. The proof is not difficult, because Forward
Copy and the worst case of re-converge at the immediate
post-dominator are both spanning the CFG in a depth-first
order. The detailed proof is omitted here due to the page
limit.

All the above three transformations insert new instructions into
the original program. The cut transformation, especially, has to use
several new variables to store flag values, which introduces new
register pressure. It needs to use more conditional branches as well
when exiting the loop, which may cause more divergence in the
GPU architecture (see Section 2.2).

This transformation is not only useful in characterizing unstruc-
tured control flows as discussed above. It can also be used in dy-
namic compilers which are used in heterogeneous systems, since
the support for unstructured control flows in different GPU devices
is different. This kind of transformation allows the program to run
on several different back-ends without the interference of users,
which is very useful for the large clusters comprised of different
GPU backends.

4. EXPERIMENTAL EVALUATION
This section evaluates how often unstructured control flows are

used in real GPU programs and how they may impact the perfor-
mance over a large collection of CUDA benchmarks from CUDA

Suite Number of Benchmarks Number of Transformed
Benchmarks

CUDA SDK 56 4
Parboil 12 3
Rodinia 20 9
Optix 25 11

Table 1: Existence of unstructured control flows in different
GPU benchmark suites

SDK 3.2 [21], Parboil 2.0 [13], Rodinia 1.0 [5], Optix SDK 2.1 [22]
and some third party applications. The CUDA SDK contains a large
collection of simple GPU programs. Parboil benchmarks are com-
pute intensive. Rodinia’s collection is chosen to represent differ-
ent types of GPU parallel programs, which are more complex than
those in the CUDA SDK. Optix SDK includes several ray tracing
applications. The three third party GPU applications used are ren-
derer [24] (a 3D renderer), sphy-raena [3] (a SQL querry Engine),
and mcrad [9] (a radiative transport equation solver).

As for the compilation tools, NVCC 3.2 is used to compile CUDA
programs to PTX code. Optix SDK benchmarks are running under
Optix’s own execution engine. A GPU compilation infrastructure,
Ocelot 1.2.807 [7], is used for several other purposes: back-end
code generation, PTX transformation, functional emulation, trace
generation and performance analysis.

4.1 Static Characterization
The first set of experiments attempts to characterize the existence

of certain types of control flow in existing CUDA workloads by
using the unstructured to structured transformations introduced in
Section 3. The transformation is implemented as a static optimiza-
tion pass in Ocelot and it is applied to the PTX code of all bench-
marks. The optimization can detect unstructured control flow and
classify them by the type of transformations used(Cut, Backward
Copy, or Forward Copy). The correctness of the transformation is
verified by comparing the output results of the original program and
the transformed program. Table 1 shows the number of applications
having unstructured control flow in four examined GPU benchmark
suites. Out of the 113 applications examined, 27 contain unstruc-
tured control flow, indicating that at the very least an unstructured
to structured compiler transformation is required to support gen-
eral CUDA applications on all GPUs. It is also the case that more
complex applications are more likely to include unstructured con-
trol flow. Almost half of the applications in the Rodinia and Optix
include unstructured control flow.

Table 2 shows the usage of different transformations. The first
column is the benchmark name. The second column is the num-
ber of branch instructions every benchmark has. The third to the
fifth columns show the number of times each transformation is used
for every benchmark. The statistics show that Backward Copy
appears to be nonexistent in current workloads which follows the
common practice that programmers rarely write a loop with mul-
tiple entries. Cut transformations are necessary in programs that
involve loops, but the shallow levels of nesting of GPU programs,
especially those simple programs, makes this operation less com-
mon. Forward transformations are used most often. Further re-
search shows that short-circuiting is the main trigger of these trans-
formations. As explained in Section 2.2, short-circuiting does not
run efficiently on the GPU platform.

The sixth and seventh column of Table 2 is the static code size
of the benchmarks before and after the transformation. Static Code
size is calculated by counting the PTX instructions of the bench-
mark. Usually the larger its code size is, the more complex control
flow the program may have and the more transformations it needs.



Benchmark Branch Instruction Cut Forward Copy Backward Copy old code size new code size Static Code Expansion (%)

CUDA SDK

mergeSort 160 0 4 0 1914 1946 1.67

particles 32 0 1 0 772 790 2.33

Mandelbrot 340 6 6 0 3470 4072 17.35

eigenValues 431 0 2 0 4459 4519 1.35

PARBOIL

bfs 65 1 0 0 684 689 0.73

mri-fhd 163 1 0 0 1979 1984 0.25

tpacf 37 0 1 0 476 499 4.83

RODINIA

heartwall 144 0 2 0 1683 1701 1.07

hotspot 19 1 0 0 237 242 2.11

particlefilter_naive 29 3 5 0 155 203 30.97

particlfilter_float 132 2 4 0 1524 1566 2.76

mummergpu 92 2 26 0 1112 2117 90.38

srad_v1 34 0 1 0 572 595 4.02

Myocyte 4452 2 55 0 54993 62800 14.20

Cell 74 1 0 0 507 512 0.99

PathFinder 9 1 0 0 136 141 3.68

OPTIX

glass 157 0 7 0 4385 4892 11.56

julia 1634 14 22 0 14097 18191 29.04

mcmc_sampler 101 0 3 0 4225 4702 11.29

whirligig 143 0 8 0 4533 5303 16.99

whitted 173 0 6 0 5389 5841 8.39

zoneplate 297 0 3 0 3397 3400 0.09

collision 101 0 4 0 2585 2595 0.39

progressivePhotonMap 127 0 4 0 3905 3960 1.41

path_trace 29 1 0 0 1870 1875 0.27

heightfield 46 1 0 0 1761 1771 0.57

swimmingShark 51 1 0 0 1990 2000 0.50

mcrad 415 11 10 0 4552 5238 15.07

sphyraena 1125 4 3 0 4393 4418 0.57

Renderer 7148 943 179 0 70176 111540 58.94

Table 2: Unstructured to structured transformation statistics

Benchmarks that have one Cut and zero Forward Copy, such as
path_trace and heightfield, show that the number of instructions in-
serted by Cut is small. However, this is not the case for the Forward
Copy. In the benchmark mummergpu, its code size was doubled by
26 Forward Copy transformations. The code size increment caused
by Forward Copy depends on the size of the shared CFG nodes that
need to be duplicated. Column eight is the relative static code ex-
pansion. Figure 7 shows the code expansion of those benchmarks
using at least one Forward Copy with an average of 14.76%. For
those benchmarks having a large number of transformations, such
as mummergpu, julia, and Renderer, the static code expansion is
significant.

Among all the benchmarks, Renderer has far more transforma-
tions than the rest. Other graphics benchmarks (particles, Mandle-
brot, Optix SDK suite) also have more unstructured control flow on
average. It is fair to say that graphics applications have great poten-
tial to improve performance if unstructured control flow could be
handled more efficiently.

4.2 Dynamic Characterization
Since a better technology to run unstructured control flows is

unknown, we cannot get an accurate performance impact of re-
convergence at immediate post-dominator. However, we can use
the functional emulator provided by Ocelot to count the number of



Static Code Expansion (%)

0.00
20.00
40.00
60.00
80.00

100.00

m
e
r
g
e
S
o
r
t

p
a
r
t
i
c
l
e
s

M
a
n
d
e
l
b
r
o
t

e
i
g
e
n
V
a
l
u
e
s

t
p
a
c
f

h
e
a
r
t
w
a
l
l

p
a
r
t
i
c
l
f
i
l
t
e
r

_
n
a
i
v
e

p
a
r
t
i
c
l
f
i
l
t
e
r

_
f
l
o
a
t

m
u
m
m
e
r
g
p
u

s
r
a
d
_
v
1

M
y
o
c
y
t
e

g
l
a
s
s

j
u
l
i
a

m
c
m
c
_
s
a
m
p
l
e
r

w
h
i
r
l
i
g
i
g

w
h
i
t
t
e
d

z
o
n
e
p
l
a
t
e

c
o
l
l
i
s
i
o
n

p
r
o
g
r
e
s
s
i
v
e
P
h

o
t
o
n
M
a
p

m
c
r
a
d

s
p
h
y
r
a
e
n
a

R
e
n
d
e
r
e
r

Figure 7: Static code expansion of benchmarks using Forward Copy

Benchmark Dynamic Code Expansion Original Dynamic Instruction
(number of instructions) Count

mergeSort 0 192036155
particles 8 277126005
Mandelbrot 86690 40756133
eigenValues 7100 628718500
tpacf 2082509458 11724288389
heartwall 749028 121606107
mummergpu 11947451 53616778
Myocyte 205924 7893897
sphyraena 0 133386
Renderer 1153435 279729298

Table 3: Upper limit of dynamic code expansion

instructions executed due to the lack of earlier re-convergence such
as instructions executed during time slots 4–11 in Figure 3(c).

In this experiment, we first determined which basic blocks (CFG
nodes) form the unstructured control flow from our static transfor-
mation. These basic blocks might be dynamically expanded at run-
time (like B3, B4, and B5 in Figure 3(a)). Then, we used the em-
ulator to count the number of times these basic blocks will run in
a divergent warp. For example, in Figure 3(c), B3 and B4 each
runs twice in the divergent warp and B5 runs four times. Assuming
each basic block has 1 instruction, we can say at most 8 instruc-
tions which are executed in time slots 4–11 may miss the early
re-convergence (actual number of dynamic expanded instructions
is 5, executed in time slots 7–11). Although this method overesti-
mates the performance degradation, the overestimated part is lim-
ited to the initial execution of these instructions as they should not
be counted. Take Figure 3(c) as an example, the overestimated part
is time slots 4–6 during which B3, B4 and B5 are executed for the
first time.

Table 3 shows the upper limit of dynamic code expansion for
benchmarks using Forward Copy. Some benchmarks are not in-
cluded due to the issues of the emulator. The results vary greatly.
Some benchmarks, such as particles and mergeSort, have very low
value because the unstructured part is executed infrequently or warps
do not diverge when executing them. However, other benchmarks,
such as mummergpu and tpacf, have a significant value meaning the
application repeatedly executes these unstructured control flows. In
this case, not having earlier re-convergence will impact the perfor-
mance significantly. It is also interesting to notice that benchmark
tpacf has low static code expansion but high dynamic code expan-
sion, which means the unstructured part is executed very frequently.

4.3 Case Study
In this experiment, we modified the Ocelot emulator and rewrote

the mummergpu benchmark to force it to re-converge as early as
possible. The benchmark rewriting includes adjusting the PTX

code layout, so re-convergence points appear at the earliest point
like B3 appears after B1 and B2 in Figure 3(d). We measured
the dynamic instruction count (instructions dynamically executed
by all threads) of two mechanisms: re-converging at immediate
post-dominator and re-converging at the earliest point. The re-
sult shows that re-converging at earliest place can reduce 14.2%
(from 53616778 to 46008916) dynamic instructions, which further
demonstrates that it is a promising research area.

5. RELATED WORK
SIMD architectures have been designed with basic support for

control flow since their large-scale deployment in the 1960s. Since
that time, new designs have been incrementally augmented with
compiler-assisted hardware support for non-nested structured con-
trol flow and eventually all hammock graphs [25]. These designs
have culminated in support for all forms of unstructured control
flow without any static code expansion.

ILLIAC IV [4], which is in general considered to be the first
large-scale SIMD supercomputer, was designed around the concept
of a control processor that maintained a series of predicate bits,
one for each SIMD lane. Its instruction set could be used to set
the predicate bits to implement simple common structured control
flows such as if-then-else blocks and loops.

The primary limitation of a single predicate register is its in-
ability to handle programs with nested control flow. In 1982 the
CHAP [17] graphics processor introduced the concept of a stack of
predicate registers to address this problem. CHAP includes explicit
instructions for if, else, endif, do, while statements in the high level
language. This is currently the most popular method of support-
ing control flow on SIMD processors and is also used by the AMD
Evergreen and Intel GEN5 graphics processors.

To support unstructured control flow, a technique refer to as im-
mediate post-dominator re-convergence is developed, which extends
the concept of a predicate stack to support programs with arbi-
trary control flow. This is done by finding the immediate post-
dominator for all potentially divergent branch and inserting an ex-
plicit re-converge instruction. During execution, predicate registers
are pushed onto the stack on divergent branches and popped when
re-converge points are hit. In order to resume execution after all
paths have reached the post-dominator, the program counter of the
warp executing the branch is adjusted to the instruction immedi-
ately after the re-converge point.

All of the previous techniques have been implemented in com-
mercial SIMD processors. Dynamic warp formation is a technique
originally described by Fung et al. [11] that increases the efficiency
of immediate post-dominator re-convergence by migrating threads
between warps if they are executing the same instruction. How-
ever, the power and hardware complexity to support detecting this
and dynamically creating a new warp from a pool of threads at the
same PC, which requires fully associative PC comparisons across



active warps every cycle and register file changes may outweigh the
performance advantages. Like post-dominator re-convergence, this
scheme supports all program control flow.

As to the area of GPU application characterization, Kerr et al. [15]
and Goswami et al. [12] respectively characterized a large of of
GPU benchmarks by using a wide range of metrics covering control
flow, data flow, parallelism, and memory behaviors. Goswami also
researched the similarities between different benchmarks. Their
studies are valuable for future GPU compilation and microarchitec-
ture design. Instead, our work focuses on the execution of unstruc-
tured control flow in GPUs and provides insight, characterizations,
and suggestions for future GPU designs.

6. CONCLUSIONS
This work addresses the problem of running arbitary programs

on any GPU device. The current state of practice is not satisfactory,
since the support of unstructured control flow is very poor. Some
GPU devices do not support unstructured control flow at all, while
others do not support it efficiently because they will miss the earli-
est re-converge point. We propose an IR level control flow transfor-
mation that can turn an unstructured control flow into a structured
one. This transformation is used to characterize the existence of un-
structured control flow in a large number of benchmarks. The result
verifies the importance of the problem. Further, the transformation
is also usful in the dynamic compiler used in a heterogeneous sys-
tem.

In the future, we will focus on automatically finding earliest re-
convergence points in an unstructured control flow by using differ-
ent compiler and hardware techniques to improve execution effi-
ciency of arbitary programs on GPUs. At the same time, unstruc-
tured to structured transformation is also a useful technique. Its
impact on the memory hierarchy deserves further research.
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