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Abstract. As the role of highly-parallel accelerators becomes more im-
portant in high performance computing, so does the need to ensure their
reliable operation. In applications where precision and correctness is a
necessity, bit-level reliable operation is required. While there exist mech-
anisms for error detection and correction, the cost-effective implementa-
tion in massively parallel accelerators is still an active area of research.
In this paper we present an alternative software based approach for im-
proving the reliability of massively parallel bulk synchronous processors
such as modern GPUs. Specifically, we propose a set of software reliability
enhancements via transparent code patching of GPU applications. Relia-
bility enhancements can be applied selectively at runtime, customized by
the user, and transparent to the application. Runtime overhead ranges
from 1-737% depending on the nature of the enhancement. We provide
an analysis of benefits and limitations.
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1 Introduction

Bulk synchronous parallel (BSP) processors such as general purpose graphics
processing units (GPUs) are becoming a dominant computation resource in high
performance computing. Potential failures inherent in GPUs are magnified with
their increased usage. Haque et. al. [1] showed two third of consumer grade
GPGPUs have detectable soft errors. Such transient errors can be mitigated by
mechanisms such as error correction-code (ECC) that can detect such faults and
recover. Software ECC has been in use in professional-grade GPUs since the
Fermi architecture, but they also introduce non-trivial runtime overhead–up to
100% [2, 3].

Fault detection and recovery mechanisms can prevent loss of precision and
maintain correctness. Fault detection prevents the output of silent errors by de-
tecting faults as they occur. Recovery mechanisms prevents the propagation of
errors by rolling back the program state to a checkpoint. Together they ensure
reliable execution. Such mechanisms are already implemented in some GPU ac-
celerators, e.g., redundancy in the memory system and bus operation. Hardware
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ECC enabled memory prevents transient faults in DRAM, while cyclic redun-
dancy checks in the GDDR5 interface prevents faults from occurring during
transfers across the memory bus[4]. However, these mechanisms incur extra cost
and not all devices employ them and they do not cover all failure models, such
as transient faults in compute or control logic.

Other approaches [5–8] demonstrated the increased reliability of software-
based fault-detection techniques in CPU architectures. However they are not
flexible in practical situations and require manual code insertion. The growing
dominance of GPUs in compute-heavy infrastructures demands such features to
be more amenable to deployment.

Therefore we seek an approach that is customizable, extensible, and trans-
parent to the application program. In this paper we present a set of transparent
and automatic software reliability enhancements to GPU applications using the
Lynx dynamic instrumentation framework [9]. Lynx was originally developed
to insert instrumentation code into a GPU executable, operating on the low
level virtual instruction set, just above the assembly language level. We use this
capability to enhance the reliability of a GPU kernel. This instrumentation ca-
pability affords two features: transparency and automation. Transparency is the
ability to implement software error-detection without the need for manual pro-
gram modification. Since Lynx is a dynamic library, user programs can invoke
instrumentation transparently and selectively each time the application executes
automatically. These two capabilities allows flexibility in how it is used by the
end-user. Additionally, enhancements can be customized by the end user to tai-
lor to the specific needs of an individual application. We document three initial
enhancements and their usages, as well as benefits and limitations. The three
enhancements are: alignment check, array bounds check, and control flow check.
We show the performance overhead of these enhancements, ranging from 1-737%.

The rest of this paper is organized into the following sections. In Section 2,
we cover the background of GPU computing, Lynx, and its underlying infras-
tructure. In Section 3, we illustrate the mechanisms behind the reliability en-
hancements in general and present individual examples. In Section 4, we demon-
strate the overhead of the enhancements in several applications from the CUDA
SDK [10] . In Section 5, we note potential enhancements in the future and char-
acterize their benefits to fault detection.

2 Background

This section offers an overview of the GPU computing model and the context
within which GPU Lynx and Ocelot [11] operate.

2.1 GPU Computing

A CUDA application is composed of a series of multithreaded, data-parallel ker-
nels. These kernels consist of a grid of parallel work-units called Cooperative
Thread Arrays (CTAs), which in turn consist of an array of threads that may
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synchronize at CTA-wide barriers. Each CTA is data and control-flow indepen-
dent of other CTAs. This property enables CTAs to be executed concurrently
and in parallel. This means they can be executed in any order without affecting
the correctness of the program. In NVIDIA processors, threads within a CTA
are grouped together into logical units known as warps that are mapped to single
instruction stream multiple data stream (SIMD) units called stream multipro-
cessors (SMs). While derived from NVIDIAs CUDA, this model closely matches
the execution model of the industry standard OpenCL.

All threads within a warp execute in lockstep. The execution of warps, how-
ever, are interleaved based on a hardware scheduler such that one warp may
run-ahead of another. Each thread has access to global memory within the de-
vice. There is also a faster, hardware-managed, shared memory accessible by
threads within each SM. While there is a synchronization mechanism between
warps of a CTA, there exists no such mechanism across CTAs except for kernel
boundaries.

In the accelerator model of execution, the host allocates and initializes cor-
responding data on the device side, and launches the kernel on the device by
making function calls to the CUDA runtime.

2.2 Lynx and GPU Ocelot

Lynx [9] is a dynamic instrumentation engine for data-parallel applications on
GPU architectures. Specifically, Lynx allows the creation of customized, user-
defined instrumentation routines that can be applied transparently at run-time
for a variety of purposes, including performance debugging and correctness
checking. Lynx can be built as a library, where it can be linked with any runtime,
or as a Lynx runtime, where it provides a default implementation of the CUDA
runtime to directly support the execution of CUDA applications on NVIDIA
GPU devices. In both cases, Lynx relies on GPU Ocelot’s [12] Parser and IR/-
Analyses classes for extracting and generating NVIDIA’s parallel thread execu-
tion (PTX) intermediate representation from the compiled CUDA fat binary.
GPU Ocelot is a dynamic compilation framework for executing CUDA appli-
cations on multiple backends. While the Lynx runtime only supports execution
on NVIDIA GPU backends, the Lynx library can be linked with GPU Ocelot
to take advantage of Ocelot’s support for additional backend targets, such as
x86 [12], AMD GPU [13], or the built-in emulator.

2.3 Instrumenting with Lynx

Lynx [9] enables insertion of user-defined instrumentations into CUDA appli-
cations. The general procedure for executing CUDA applications includes ex-
tracting the compute kernel source in the NVIDIA’s PTX instruction set from
the compiled CUDA fat binary, generating an intermediate representation (IR)
for this PTX kernel, applying the relevant PTX transformations based on the
transformation passes defined (performed by the PTX-PTX Transformations
Pass Manager), and finally executing the modified kernels on the backend target.
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These transformations can be used to characterize application performance or
implement runtime correctness checks and other reliability enchancements. Fig-
ure 1 shows the overview of how reliability enhancement transformation passes
fit into the instrumentation workflow of Lynx. For more information on the
transformation pass framework, please refer to [14].

Fig. 1. Reliability enhancement passes within Lynx

3 Reliability and Correctness Enhancements

The contribution of this paper lies in the reliability and correctness checking
enhancements implemented as instrumentations in Lynx.

3.1 Anatomy of an Instrumentation

Each instrumentation is broken into two classes: instrumentation and trans-
formation. The instrumentation class performs data allocation on the device,
creates an object of the transformation class, and transfers the analysis data on
the device back to the host after kernel execution.

The transformation class takes the device kernel and insert, modify, or replace
instructions based on user-defined criteria. The transformation class modifies the
kernel by applying a procedural transformation pass over one or more of three
levels: module, kernel, and basic block. The transformation pass can look for a
specific class of instructions, such as memory instructions, and inject enhance-
ment code for a variety of purposes, such as to count the number of dynamic
executions or to check the validity of its operands.
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GPU instrumentation enables a diverse set of software reliability enhance-
ments spanning correctness checking and failure detection. Correctness checking
functions include memory alignment detection, array bound access check, and
potentially uninitialized shared memory usage detection. Possible fault detec-
tion instrumentations include transient fault checks (implemented as automatic
redundant kernel execution), illegal control flow detection, and software based
ECC. While not all of these reliability enhancements have been implemented in
the form of instrumentations, this list shows the potential of GPU instrumenta-
tion.

3.2 Software Reliability Enhancements (SRE)

The general algorithm of each SRE is composed of three phases: detect a tran-
sient fault, flag the occurrence of such a fault, and resume execution. It is up
to a higher level runtime monitor to determine the necessary course of action
once an error has been detected, such as ignore the error, re-execute the ker-
nel, or initiate an application specific error handling procedure. SRE’s are not
inherently immune to faults within the inserted code, but they can be resilient
to some faults. Each SRE targets a different fault model. The alignment checker
targets errors in memory address operands in load/store instructions. These er-
rors can be the result of transient bit-flips or missed algorithmic or logic errors.
The array bounds checker is similar to the alignment checker in that it targets
errors occurring in memory address operands in load/store instructions, but it
also checks the address against the boundaries of all valid global memory allo-
cations. The control flow checker targets faults in the branch address operand
of control-flow instructions and detects illegal control flows.

Alignment Checker This SRE checks each memory instruction and ensures
correct alignment of its memory address operands. An address is aligned when it
is a multiple of the target data size. Upon detecting an unaligned address, it will
write diagnostic information to global memory where, upon kernel execution
completion, it will be transferred to the host. To make room for diagnostic
information, a data structure is allocated on the device before kernel launch.

The transform class iterates over each instruction in the kernel. At each
memory instruction, it finds the address operand and calculates the final address
using the offset and the base address. A bit-mask is generated at compile time
based on the data type of the memory instruction. The final address is then
masked to reveal the lower order bits. An error is detected if this result is non-zero
and the error flag is written back. The instructions for write-back are predicated
on the comparison between the result register and zero, as shown in Listing 1.

The PTX instructions inserted before each memory operation is shown in
Listing 1. Pseudocode is added in the comments to illustrate the purpose of each
code segment. If a bit were to flip in one of the registers during the alignment
check, there is a non-zero chance that a silent error will occur, though this is
very unlikely. When an error is detected, the diagnostic data will be copied to
the host upon kernel execution completion.
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Listing 1. Alignment Checker PTX instrumentation

// original instruction is: a = array[i]
//check if address is aligned
add.u64 %MemAddr , %array , %i
and.b64 %result , %rMemAddr , 3;
setp.ne.u64 %unAligned , %result , 0;

//write back to log in global memory
@%unAligned st.global.u64 [%log], 1; // fault occured
@%unAligned st.global.u64 [%log + 8], %tid;
@%unAligned st.global.u64 [%log + 16], %MemAddr;
@%unAligned st.global.u64 [%log + 32], sourceLineNumber;

// original load instruction
ld.global.f32 %r9, [%array + %i];

Array Bounds Checker This SRE compares each global memory reference to
a list of known global allocations to determine its legality. A sparse allocation
table is generated by the instrumentation object at compile time and inserted
into device memory via CUDA API calls. This table contains the first and last
address of each global memory allocation made by the original program. In the
transformation pass, memory instructions referencing the global address space
is checked against this table in a for loop. If the address of the memory reference
does not reside in the table, it is deemed illegal and relevant data is written to
global memory.

Listing 2 shows the code inserted for every global memory instruction. Future
improvements can be made to compartmentalize this into a function call. This
instrumentation requires creation of new basic block and modification to the
control flow graph. Depending on the frequency of global memory accesses, this
enhancement pass can incur high overhead due to the execution of a for loop
on each memory access. The backward edge and conditional exit out of this
for loop has a high impact on bulk-synchronous compute architectures due to
branch redirection and divergence behavior, which stalls the in-order pipeline of
the Stream Multiprocessors (SM) and reduces the number of available warps in
the hardware scheduler.

This method of illegal memory reference detection does not catch all incorrect
addresses, however. Because the address checking mechanism does not keep track
of each memory instruction and their designated allocation, it is possible for a
corrupted operand to point to a valid memory allocation other than the intended
and proceed undetected. A simple extension to this is to statically track all array
references to their respective memory allocation and insert corresponding checks.
While this approach would not cover indirect accesses via arbitrary pointers, it
would reduce the instrumentation overhead depending on the number of global
memory allocations in the original program. This enhancement is planned in
future work.
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Listing 2. Array Bounds Checker PTX instrumentation

// original code: x = *memAddr
//load allocation map pointer and find end of map
ld.global.u64 %mapPtr , [__global_allocation_map ];
ld.global.u64 %numElem , [% mapPtr ];
add.u64 %mapEnd , %mapPtr , %numElem;

Loop_Start:
//if end of map reached , no valid alloc found
setp.lt.u64 %pred , %mapEnd , %mapPtr;
@%pred bra Error;

Check_Base_Address:
//is memAddr less than base address?
//if so, compare against next allocation
ld.global.u64 %baseAddr , [% mapPtr + 8];
setp.lt.u64 %pred , %memAddr , %baseAddr;
@%pred add.u64 %mapPtr , %mapPtr , 16;
@%pred bra Loop_Start;

Check_End_Address:
//is memAddr is less than last address of allocation?
//if so, memAddr falls within this allocation
ld.global.u64 %endAddr , [% mapPtr + 16];
setp.lt.u64 %pred , %memAddr , %endAddr;
@%pred bra No_Error;

End_loop:
// increment mapPtr to next allocation
add.u64 %mapPtr , %mapPtr , 16;
bra Loop_start;

Error:
// report diagnostic information
cvt.u64.u32 %r43 , %tid.x;
st.global.u64 [%r36], %r43;
st.global.u64 [%r36 + 8], %memAddr;

No_Error:
// original code
ld.global.f32 %x, [% memAddr ];

Control Flow Checker This SRE is the same as that proposed in [5]. It
enhances every basic block with a unique signature. With the exception of the
entry block, the beginning of each basic block is instrumented with a signature
check. This check hashes the signature of the previous block (source block) in a
dynamic control flow with that of the current block (target block). A comparison
checks if the result of this hash matches the precomputed value. In the event
of a mismatch, an error flag will be written back and signaled to the host upon
completion of the kernel. In the case of a control-flow fan-in, multiple basic
blocks can legally branch to the same block. Without additional mechanisms,
multiple blocks will share the same signature in order to match the target block
signature. Instead, a Signature Difference Register (SDR) is used to distinguish
the source basic blocks from one another. The SDR will be populated by the
source basic block and only checked by the target block in the case of a fan-in.

Listing 3 shows the enhancement code inserted in each basic block. The
entry block only requires an initial signature. In the beginning of subsequent
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blocks, the signature register is hashed with a value to derive the signature of
the current block. The resultant signature is compared against a precomputed
value, and the error handling is predicated on this comparison. BasicBlock2 & 3
are source blocks to a control-flow fan-in, which requires the initialization of the
SDR. In BasicBlock4, the SDR is first hashed with the signature register before
the actual hash to determine the current signature. In this way BasicBlock2
& 3 possess unique signatures but can still resolve to the same signature for
control-flow fan-ins. More information regarding this method can be found in
[5]. If a transient bit flip were to occur in the checker code, a false positive may
be reported as this will likely modify the signature and result in a mismatch.

Listing 3. Control Flow Checker PTX instrumentation

EntryBlock:
mov.u64 %signature , 55062;
add.u64 %a, %b, %c; //body

BasicBlock2:
xor.b64 %signature , %signature , 46048;
setp.ne.u64 %pred , %signature , 25846;
@%pred st.u64 [%error], 1;
@%pred exit;
mov.u64 %difference , 73939;
bra BasicBlock4; //body

BasicBlock3:
xor.b64 %signature , %signature , 14893;
sept.ne.u64 %pred , %signature , 24283;
@%pred st.u64 [%error], 1;
@%pred exit;
mov.u64 %difference , 72446;
add.u64 %a, %b, %c; //body

BasicBlock4: // control flow fan -in
xor.b64 %signature , %signature , %difference;
xor.b64 %signature , signature , 94732;
sept.ne.u64 %pred , %signature , 13865;
@%pred st.u64 [%error], 1;
ret; //body

4 Evaluation

We evaluated the software reliability enhancements (SRE) over 12 CUDA SDK
benchmarks [10] on an NVIDIA, Kepler architecture GPU, the GTX 660 Ti. The
total runtime of each kernel, without memory transfer overhead, was measured
with the command line cudaprof [15]. As shown in Figure 2, runtime overhead of
these benchmarks ranged from below 1% to 737%, depending on the benchmark
and the enhancement. Each SRE has unique characteristic in terms of overhead.
The Control Flow Checker (CFC) showed minimal overhead, ranging from less
than 1% to 14%. Since this SRE inserts only several instructions per basic block,
its impact on performance is the smallest out of the sampled SRE. The Bounds
Checker (BC) exhibits the highest overhead overall. This overhead has a strong
correlation with the normalized dynamic branches executed in Figure 3.
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Fig. 2. Normalized runtime

Fig. 3. Normalized dynamic branches

The Alignment Checker (AC) inserts less instructions per memory reference
than BC but is more intrusive than the block level instrumentation of the CFC.
While AC does not introduce comparably as many branches as CFC, it does
induce similar amount of L2 cache misses as CFC in ConvolutionSeparable,
Eigenvalue, and MatrixMul, as shown in Figure 4.
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Fig. 4. Normalized L2 misses

5 Future Work

Future work includes a more fine grained examination of the performance charac-
teristics of each SRE, randomized fault injection, and their efficacy at detecting
and improving their own resilience to such faults. We plan to develop more
resilience specific instrumentation, including redundant kernel execution, selec-
tive software-based ECC, and enhancements to control flow checking such as
detecting legal but wrong branches by dynamically assign signatures based on
condition variable.

6 Related Work

Enhancing reliability using software patching is not a novel concept. Yau, et.
al. [8] proposed the notion of self-checking software, citing useful checks such as
function call, control sequence, and data integrity. Annelid [7] performs bounds-
checks by recording array pointer variables and the legitimate range of memory
they can access. Annelid is a plugin to Valgrind [16], a dynamic instrumentation
platform that translates x86 machine code to a virtual ISA, where instrumen-
tation occurs, and the result is translated back into machine language. Oh, et.
al. [5] propose control flow checking using software signatures. This technique
is implemented as SRE in this paper. In branching-fault injection experiments,
this method lowered the percentage of undetected incorrect output from 33.7%
to 3.1%. SWIFT [6] enhances control flow checking by dynamically assigning
block signatures based on the branch condition using redundant execution, but
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limits to branches affecting stores. This technique target Itanium processor us-
ing a modified OpenIMPACT compiler. Erez et. al. [17] proposed a fault toler-
ance technique using redundant execution, checkpoints at control flows governing
write backs, and control flow checking only at checkpoints. This technique focuses
on Merrimac architecture. Sheaffer et. al. [18] proposed redundant hardware ex-
ecution resources to provide resilience in the face of transient faults in com-
putation logic. Dimitrov et. al. [19] proposed three methodologies of redundant
execution to achieve software reliability in GPU applications with approximately
100% overhead. One was duplicate kernel execution and the other two utilized
instruction-level and thread-level parallelism. They also argued ECC protected
memory does not significantly reduce execution time in redundant computation
scenarios, as input data are not always read-only and as such requires duplica-
tion. Maruyama et. al. [4] demonstrated a low overhead software-based ECC for
GPU applications by offloading parity computation to the CPU. Their imple-
mentation is in the form of a library, which requires manual insertion of library
calls into the target application, where as reliability enhancements using Lynx
can be performed transparently at runtime. Chung et. al. [20] proposed the con-
cept of Containment Domains (CD) for resilient computing in a scalable and
efficient manner. CDs are hierarchical in nature and failures in nested CD are
localized and do not propagate outward. Reliability enhancements proposed in
this paper can be used to detect failures where a more efficient algorithmic failure
detection does not exist.

7 Conclusion

This paper presents a set of reliability enhancements that has the flexibility to
run selectively, be customized for a specific purpose, and applied transparently
to the application without modifying the original source. Runtime overheads
ranged from less than 1% to less than 8x runtime. This broad range is dependent
on the behavior of the original application as well as the intrusiveness of the
enhancement. Ultimately, this reliability mechanism can be extended based on
the specific needs of the user for critical applications as well as for operating on
consumer devices that lack the required built-in reliability mechanisms. Future
iterations of these enhancements will aim to increase the robustness and extend
to cover other fault models such as memory faults.
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