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Introduction– The Ubiquity of Simulation

I Simulation is a requirement of architecture research.

I Few architecture researchers have access to the resources
needed to create full-scale prototypes.

I Those with the resources would prefer not to spend them
building incremental prototypes.

I Even if they would, the turn-around time for building a new
CPU, even using pre-designed components would be very long.
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Reasons for the simulation gap:
I Parallel simulation is hard, so we use serial simulators for

parallel machines.
I Developments in computer architecture tend to be additive,

but we keep building simulators from scratch.
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Ways to narrow the simulation gap:

I Spend less time researching architecture and more time
developing simulators?

I Probably would not be well-received by the architecture
community.

I Increase simulator throughput so more simulations can be run
in a reasonable amount of time.

I Parallelize them.

I Find ways to make simulator development more efficient.

If we make simulator development more efficient, we increase the
rate at which simulation capacity can grow.
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What is a front end?

I Most simulators are broken into a front end and a back end
by their designers.

I The front end handles the execution of instructions (making
sure the register state is correct).

I Because instruction sets are very complex, front ends are
usually created by using and modifying an existing emulation
solution or avoiding emulation entirely and tracing native
execution.

I The back end handles timing, power, and other metrics (how
long did that instruction take to clear the pipeline).

I Back ends are the part that implements the logic that makes
a simulator unique.
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ends and back ends.

I No additional code would need to be written to adapt general
purpose emulators for simulation duty.
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off-the-shelf emulators as simulator front ends.

I Each time this is done, yet another simulator-specific front
end is created.
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I Provide an API that does not change unnecessarily beacuse of
the type of front end or the instruction set.

I Enable the construction of multithreaded simulators.

I Provide sufficient control and detail in the API to make it
useable with most back ends.
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I We have built a simlator front end based on QEMU1 that
aims to address these issues. It currently:

I Runs unmodified binaries on a lightly-modified Linux guest.
I Enables the construction of multithreaded simulators.
I Has full support for 32-bit x86 guests. (Port to 64-bit x86

weeks from completion; port to ARM in early coding stages.)
I Enables parallel simulation.

1http://www.qemu.org



QSim

I We have built a simlator front end based on QEMU1 that
aims to address these issues. It currently:

I Runs unmodified binaries on a lightly-modified Linux guest.

I Enables the construction of multithreaded simulators.
I Has full support for 32-bit x86 guests. (Port to 64-bit x86

weeks from completion; port to ARM in early coding stages.)
I Enables parallel simulation.

1http://www.qemu.org



QSim

I We have built a simlator front end based on QEMU1 that
aims to address these issues. It currently:

I Runs unmodified binaries on a lightly-modified Linux guest.
I Enables the construction of multithreaded simulators.

I Has full support for 32-bit x86 guests. (Port to 64-bit x86
weeks from completion; port to ARM in early coding stages.)

I Enables parallel simulation.

1http://www.qemu.org



QSim

I We have built a simlator front end based on QEMU1 that
aims to address these issues. It currently:

I Runs unmodified binaries on a lightly-modified Linux guest.
I Enables the construction of multithreaded simulators.
I Has full support for 32-bit x86 guests. (Port to 64-bit x86

weeks from completion; port to ARM in early coding stages.)

I Enables parallel simulation.

1http://www.qemu.org



QSim

I We have built a simlator front end based on QEMU1 that
aims to address these issues. It currently:

I Runs unmodified binaries on a lightly-modified Linux guest.
I Enables the construction of multithreaded simulators.
I Has full support for 32-bit x86 guests. (Port to 64-bit x86

weeks from completion; port to ARM in early coding stages.)
I Enables parallel simulation.

1http://www.qemu.org



QSim– API Overview

Set callback

Unset callback

Run
Back End

Callbacks

QSim

A simplified diagram of the QSim API.

run(i , j) Advance guest CPU i by j instructions.

set * callback(x) Set callbacks.

unset * callback(h) Unset callbacks by handle.

Callback types include: instruction, register access, memory access,
interrupt
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Typical emulator used as a simulator front end:
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Results

I Off-the-shelf open-source emulators like QEMU provide most
of the code needed to build a front end but are incomplete.

I Simulation projects like PTLSim and FAST have modified
QEMU heavily to create their front ends.
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set.
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I Since back ends tend to use more CPU time than front ends,
thread safety is more important than parallel emulation (both
are provided by QSim).

I Up to 512 guest cores have been demonstrated running on up
to 512 host threads.
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QSim– Performance

The following represents the performance of QSim with empty
callbacks. With typical simulation speeds measured in thousands of
instructions per second, QSim will not likely be the bottleneck.

Benchmark Slowdown MIPS
swaptions 259x 18.5

mtgl-bfs 387x 36.6

ocean-non-contig 267x 40.7
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QEMU QSim

Emulator Simulator Front-End
Standalone Built on QEMU
Full-system CPU and RAM only

CPUs serialized CPUs in parallel
Program Library
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Back Ends– The Canonical Example
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This is the kind of simulation QSim was designed for.

I QSim feeds instructions into CPU timing models that are part
of a larger simulation infrastructure.

I A parallel discrete event simulation engine keeps track of
events and ensures correctness.



Back Ends– The Canonical Example

Host Thread 3Host Thread 2Host Thread 1

Parallel Discrete Event Simulation Engine

. . .

CPU

Component

CPU

Component

QSim

. . . Other

Components

This is the kind of simulation QSim was designed for.

I QSim feeds instructions into CPU timing models that are part
of a larger simulation infrastructure.

I A parallel discrete event simulation engine keeps track of
events and ensures correctness.



Back Ends– The Canonical Example

Host Thread 3Host Thread 2Host Thread 1

Parallel Discrete Event Simulation Engine

. . .

CPU

Component

CPU

Component

QSim

. . . Other

Components

This is the kind of simulation QSim was designed for.

I QSim feeds instructions into CPU timing models that are part
of a larger simulation infrastructure.

I A parallel discrete event simulation engine keeps track of
events and ensures correctness.



Back Ends– Others

Other back ends that have been built for QSim include:

I A binary trace writer, which was built along with a trace
reader library that exports the QSim API.

I A serial universal processor emulator, simplesim.
I A demonstration vehicle; breaks instructions into plausible

micro-ops regardless of instruction set.

I An interactive OS/application debugger.

I Visualization utilities.
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