
A Universal Parallel Front-End for Execution Driven
Microarchitecture Simulation

Chad D. Kersey
Georgia Institute of

Technology
Atlanta, GA 30332

cdkersey@gatech.edu

Arun Rodrigues
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185
afrodri@sandia.gov

Sudhakar Yalamanchili
Georgia Institute of

Technology
Atlanta, GA 30332

sudha@ece.gatech.edu

ABSTRACT
Execution driven microarchitecture simulators tend to de-
vote a large portion of their source code to a front-end that
performs instruction set level functional simulation, provid-
ing the decoded instruction stream to a back-end that per-
forms timing simulation. In this paper we introduce the
current incarnation of QSim, a universal front-end for exe-
cution driven multicore microarchitecture simulators. QSim
adapts the popular and portable QEMU full-system emu-
lator to a thread safe, instruction set neutral API, running
unmodified application binaries in a lightly modified Linux
operating system. QSim has been shown to support at least
512 emulated hardware threads, each running in a separate
host thread.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Performance, Measurement

Keywords
simulation, simulator front-ends, emulators

1. INTRODUCTION
New ideas in computer architecture are universally ex-

plored using simulators before they are implemented in hard-
ware. The high cost and long turn-around time of building
complete prototypes to test new ideas in architecture pro-
hibits full-scale prototyping of incremental improvements.
The benefits of quick feedback and manageable cost make
simulators a fundamental part of the computer architect’s
toolbox. Further, processor design has increasingly relied
on making thread-level parallelism available to the program-
mer. Recent CPU designs [18, 17] rely on multithreaded,

c©2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or repro-
duce this article, or to allow others to do so, for Government purposes only.
RAPIDO ’12, January 23 2012, Paris, France
Copyright 2012 ACM 978-1-4503-1114-4/12/01 ...$10.00.

multicore designs to expose TLP, and simulators have to be
able to both simulate these kinds of processors and perform
well when run on these kinds of processors.

Modern simulators are typically designed in two parts; a
front-end provides a high-fidelity implementation of the in-
struction set, ensuring correct execution of the guest appli-
cation, and a back-end provides timing models and records
data. The front-end is typically a large portion of the source
code of microarchitectural simulators, but represents work
that often does not have to be replicated for each new sim-
ulator. The functional simulation component in execution
driven simulations is typically an emulator like Simics [12,
10] or QEMU [4, 20], but can also be a native executable
instrumented using a tool like Pin [11, 13].

Of the features provided by these current solutions for
building simulation front-ends, it was decided that those
most important to our productivity were:

• Supporting the creation of both execution-driven and
trace-driven simulators.

• Allowing the construction of multithreaded simulators
simulating multithreaded CPUs.

• Providing an API that simplifies both writing new
back-ends and modifying the front-end.

• Allowing the simulation of both operating system and
application code.

• Exposing instruction-level information and control of
execution to the back-end.

These traits may be available to varying degrees in the
one-off front-ends developed for the simulators listed above,
but to the authors’ knowledge, none has provided all of them
in a single package. It is the unique combination of these
traits that is the contribution of QSim.

The QSim project, introduced in [16], provides such a
front-end, running at about 20MIPS. The QSim API is de-
signed to be easy to connect to a diverse range of back-
ends and be used by other front-ends as well. This has
already been demonstrated with a trace reader that exports
the same API as the QSim emulator. Back-ends developed
using the QSim API so far include simulators, trace gath-
ering programs, and an interactive debugger. Just as com-
piler infrastructures have managed complexity by lowering
programs through a series of intermediate representations
to code generation, the QSim API is intended to be a simi-
lar step toward the simplification of the construction of full
system many core simulators by emphasizing the interface

C++

API

CPU

State

Trans.

Cache

Helper

Funcs.

QEMU CPU

CPU

State

Trans.

Cache

Helper

Funcs.

QEMU CPU

Shared

RAM

Inst. CB

Mem. CB

QSim

. . .

. . .

Back End

Function Calls

Data Flow

Thread of Execution

Figure 1: Diagram of QSim software architecture.
Multithreaded back-ends can make parallel calls to
the API which result in parallel calls to the QEMU
CPU and potentially parallel calls to callbacks in the
back-end.

between simulator front-ends and back-ends. This reduces
the work required to write a simulator and creates a nucleus
around which a multitude of interchangeable front-ends and
back-ends can be created.

2. QEMU
QEMU [4] is a robust emulation infrastructure using dy-

namic binary translation, an effective technique for fast func-
tional simulation. Dynamic binary translators perform just-
in-time compilation of the guest CPU’s instructions into em-
ulator code to be run on the host. A translation cache stores
already-translated segments of guest code so that repeatedly
executing the same blocks does not require repeated trans-
lation of those blocks, taking advantage of temporal locality
to improve emulation performance.

QEMU implements this technique in two stages, trans-
lating the guest instructions first to a set of operations in
a low-level intermediate format (LIR) and using the Tiny
Code Generator (TCG) to translate this LIR into host in-
structions. This simplifies the act of porting QEMU to new
host and guest instruction sets. QEMU is therefore portable
by design, already supporting a variety of guest instruction
sets including x86, ARM, and MIPS.

Because of the level of fidelity of the QEMU CPU em-
ulator and its open source license, it is an inviting choice
for use as a simulator front-end. However, since its intended
use is as an emulator and virtual machine monitor, QEMU’s
design is not readily usable as a simulation front-end. The
few simulation projects that have used QEMU to drive sim-
ulators have done so with considerable effort; effort which
is duplicated by each new project. QSim adapts QEMU
for simulation in a generic way, providing a rich API which
allows control of the QEMU CPU emulator at an instruc-
tion level and parallelization at the CPU level. In doing so,
the current version of QSim abandoned QEMU’s support for
I/O devices, the built-in kernel loader, and checkpointing,
replacing these with simpler, but less general functionality.

3. QSIM
QSim is implemented as library with a C++ API that

manages a collection of instances of a modified QEMU CPU

emulator. Each instance contains its own set of global vari-
ables, including the translation cache and CPU state, but
shares a common host process, guest RAM state, and QSim
callback pointers. This loosely-coupled implementation is
completely thread safe, and the QEMU CPUs can be run
either simultaneously from different host threads, or in turn
from a single thread. Figure 1 is a diagram of the QSim
implementation.

3.1 Implementation
QSim’s instances of QEMU have been modified to place

calls to new, QSim-specific “helper” functions in the trans-
lation cache along with the translated guest code. From
these helper functions, user-configured callbacks are called
as required. The set of events in execution that can cause a
callback to be called are enumerated in Table 1.

QSim provides a complete simulation environment with
guest utilities, a port of Linux, and ready-to-run benchmarks
from a variety of suites. QSim is capable of running unmodi-
fied binaries on a lightly modified (392 modified lines) Linux
kernel. Because QSim instantiates the QEMU CPU emu-
lator multiple times within the same process, the QEMU
implementations of PC IO devices have been abandoned,
limiting the devices emulated by QSim to a set of processors
connected to a shared memory. This eliminates the need
to synchronize the large set of emulated hardware otherwise
provided by QEMU when running QSim’s emulated CPUs
in parallel.

Because all of QSim’s instruction set emulation logic is im-
plemented in QEMU, which is designed with portability in
mind [4], QSim itself is portable to new architectures. Cur-
rently, multi-core guests are only supported on x86-32, but
x86-64 single-core guests have been booted, and multi-core
x86-64 guests require only further modifications to Linux in
order to work. There is also a project which aims to port
QSim to ARM guests, allowing the same set of back-ends to
work with an entirely new instruction set.

3.2 Thread Safety and Parallelization
The QSim library is thread safe. Different guest CPUs

can be run simultaneously from different host threads with
no concern for the correctness of execution. The guaran-
teed atomicity of certain memory operations is preserved
by the implementation, even though the QEMU emulators
themselves do not preserve atomicity. This allows QSim to
be used in parallel simulators, perhaps using the technique
of conservative parallel discrete event simulation [8]. It has
also been used to gather traces in parallel, by writing a trace
from each emulated CPU to a separate file.

Since the back-ends of microarchitectural simulators typ-
ically use more host CPU time than the front-end, enabling
parallelism through thread safety in the API is more im-
portant than having a parallel front-end. MARSS, a fast
detailed microarchitecture simulator with a QEMU front-
end, runs at about 200kIPS [14], while QSim runs at around
20MIPS per thread, implying that emulation contributes at
most one percent to the execution time of MARSS or similar
simulators. QSim is, however, a parallel front-end. Other
back-ends may be able to take advantage of additional per-
formance in the front-end, and parallelism in the guest soft-
ware is exploited by QSim.

3.3 Saving and Restoring State

QSim provides the ability to start from a saved state file
instead of starting at boot time. This can be important for
simulation, because large simulated core counts lead to in-
creasingly large boot times. QSim has been demonstrated to
boot hundreds of cores, but getting through the Linux boot
process for this many cores can take hours. On our test ma-
chine, booting 128 cores required almost two hours. For this
reason, QSim provides a set of already-booted kernel images
for core counts from 1 to 512 in power of two increments that
can load guest programs through a block transfer interface
from the host file system. This allows simulators to bypass
the boot process when necessary.

The saving and loading of state is handled entirely through
the QSim API. The underlying QEMU emulator provides
similar functionality, which was reimplemented at the QSim
level to reduce the number of necessary modifications to
QEMU.

4. AN API FOR FRONT-ENDS
As a central part of QSim we have developed an instruc-

tion set agnostic API for interfacing functional simulator
front-ends to back-ends, including trace gathering programs,
execution analysis and visualization utilities, and microar-
chitectural simulations. The QSim API provides a pay-as-
you-go performance penalty for instrumenting guest code.
Instrumentation can be as simple as a callback received for
each instruction executed on the guest and as complicated as
examining memory and register contents every time a read
or write occurs, implementing new behavior by adding in-
structions to the guest instruction set, and simulating I/O
devices complete with interrupts. The incremental cost of
various instrumentation can be seen for a simple trace gath-
erer in Section 5.2.

The target back-end for QSim is the microarchitecture
simulator. A microarchitecture simulator using QSim would
typically:

1. Instantiate the front-end.

2. Set up callbacks.

3. Advance guest CPUs as needed (e.g. call run()).

4. Use information gathered from callbacks to make tim-
ing decisions.

5. If the simulation has not finished, repeat from step 3.

A simple simulator might, for example, execute a number
of instructions in each guest CPU, store information gath-
ered in the callbacks in a buffer, and use that buffer’s con-
tents to compute the state of the pipeline for the following
cycles.

4.1 Instantiating the Front-End
A front-end implementing the QSim API is encapsulated

within a singleton object called OSDomain. An OSDomain

includes a set of CPUs and provides functions to control
them, including reading and writing memory locations and
setting callbacks. The object is called an OSDomain because
it is presumed that all of the CPUs within it share memory
and thus an operating system image.

Arguments to the constructor for OSDomain are perhaps
the single most variable aspect of front-ends that implement
the QSim API. For trace readers, a trace file or set of trace

1 OSDomain osd (4 , ”bzImage ”) ;

3 osd . s e t i n s t c a l l b a c k (obj , &Class : : iCB) ;
osd . set mem cal lback (obj , &Class : :mCB) ;

5

while (cond) {
7 for (int j = 0 ; j < 1000 ; ++j) {

for (int i = 0 ; i < osd . get n () ; ++i)
9 osd . run (i , 1000) ;

}
11 osd . t i m e r i n t e r r u p t () ;
}

Figure 2: Interacting with the QSim API.

files would be given to this. In QSim, the constructor takes
either a number of emulated CPUs and a kernel image, as
shown in line 1 of Figure 2 or a file containing a saved ma-
chine state.

4.2 Callbacks
The basic way the QSim front-end communicates to its

back-end is through a set of callbacks. These are in turn
called by “helpers;” functions which can be called from with
the QEMU translation cache. The major modifications to
QEMU required by QSim are a set of helper functions used
to call callbacks and modifications to the QEMU translation
process to support them. As shown on lines 3 and 4 of Figure
2, these can be arbitrary member functions of any object, as
long as they have the appropriate prototype. A complete list
of callback types supported by QSim is enumerated Table 1.

4.3 Controlling Execution
Line 9 of Figure 2 demonstrates how the front-end is ad-

vanced. The OSDomain::run() function takes as arguments
a CPU number and a number of instructions. While QSim
is capable of running for a precise number of instructions,
front-ends using the API may not be able to run for exactly
the number of instructions given, depending on their imple-
mentation. The instruction callback can be used to keep an
accurate count.

The example in Figure 2 runs 1000 instructions on each
CPU in turn until they have all executed one million in-
structions, and then calls OSDomain::timer_interrupt().
While new instructions, explained in the next section, can
be used to provide other interfaces for timers to the guest,
the only required API function to communicate the advance-
ment of time to the guest is the timer interrupt function,
which should be called periodically so the guest OS can up-
date timing structures and run the scheduler as needed.

4.4 Expanding the Guest Instruction Set
The magic instruction callback mentioned in Table 1 is a

method borrowed from the COTSon [1] simulation environ-
ment to expand the instruction set of the guest machine and
allow out-of-band communication between the guest and the
simulator back-end running on the host. This can be used to
implement new synchronization primitives, high-resolution
timers, simulated hardware, and wide-bandwidth communi-
cation between the guest and host environment. For exam-
ple, it is used by the block transfer interface mentioned in
Section 3.3 to coordinate the transfer of files into the guest’s

Callback Arguments Description
Instruction CPU, Virt./phys. address,

Inst. code, Inst. type
Received at start of every instruction executed.

Register Access CPU, Reg num./flag vec.,
size (0 for flags), read-
/write

Register access. Size is set to zero and reg num con-
tains a bit vector for condition code accesses.

Memory Access CPU, Virt./phys. address,
size, read/write

Accesses to RAM other than instruction fetch.

Atomic CPU Received at start of instruction (after instruction call-
back) if all memory operations in instruction are to be
considered atomic by the memory system.

Interrupt CPU, vector CPU is processing an interrupt starting at the next
instruction.

Magic instruction CPU, magic instruction
number

Used to extend guest instruction set.

Table 1: Callback types available in QSim.

RAM filesystem from the host.

5. BACK-END EXAMPLES
The QSim API has enabled the creation of a diverse set of

back-end programs that can all share the QSim front-end.
These include a simple trace collector, an interactive debug-
ger, visualization tools, and an experimental microarchitec-
tural simulator. Because they were all created to use the
QSim API, they could be ported to other front-ends with-
out major changes to their source code. In fact, of the pro-
grams developed so far, only the trace collector and debug-
ger would require any changes to be fully functional when
ported to a different instruction set, because they use an
x86-only disassembler, Distorm [7] to provide disassembly
of guest instructions.

5.1 Microarchitecture Simulation
Figure 3 shows a set of callbacks that is used to split an in-

struction stream into a plausible sequence of micro-instruct-
ions that are executed by the experimental SimpleSim out-
of-order processor simulator. While the set of micrp-ops
(µops) used by SimpleSim do not correspond to any vendor-
defined set, they provide a reasonable approximation for the
purpose of simulation that is not tied to any particular in-
struction set. With a few exceptions, like instructions using
the repz prefix on x86 which combine control flow, memory
accesses, and arithmetic, a vast majority of instructions on
currently popular CPUs can be broken down into a series of
memory loads and stores and arithmetic instructions. These
µops consist of an operation type, corresponding to one of
the QSim-defined, architecture-specific instruction types, a
set of input (source) registers, and set of output (destina-
tion) registers.

The instruction types are themselves changeable, corre-
sponding to functional unit types in the simulator, allow-
ing for the simulation of processors with various instruction
sets, including floating-point and vector instructions as well
as traditional RISC instruction sets and even simple CISC
instruction sets like x86.

These callbacks are amenable to modification depending
on the desired characteristics of the machine being modeled.
For example, this example breaks all load or store instruc-
tions into two micro-ops. A simple modification would be

Memory Op

Instruction

Atomic

I/O Op

Interrupt

End

Front

Trace File

Callbacks

Register

TraceWriter

Figure 4: Trace collection using QSim is a simple
matter of setting callbacks and formatting the out-
put.

to check the number of members in the inputs and outputs

sets at the beginning of mem_rd() and mem_wr(). If there
has only been a single input register read (for mem_rd()) or
two (for mem_wr()), then the operation can be considered
as a simple load or store, and as such only require a single
micro-op. An alternative used in the utrace micro-op trace
generator is to consider single memory accesses to be part
of the same micro-operation as the computation, adding a
memory location as another source.

5.2 Trace Collection
The simplest application for a front-end simply sets ev-

ery callback that QSim provides and dumps the information
provided by them to a text file as shown in Figure 4. An
implementation complete with disassembly of the dynamic
instruction trace has been built with only 200 lines of code,
most of them devoted to formatting the textual output as
shown in Figure 5.

Trace collection in QSim with this simple program is slow,
limited to around 400kIPS on our test machine, a Nehalem
clocked at 2.6GHz, by the speed of the C++ formatted IO
primitives, making the breakdown of trace time in Figure 6
mostly an illustration of the relative amounts of total output
text devoted to each type of information. Traces gathered

inst(addr, length, type) {
if (¬first uop) {

emit uop(inputs, outputs, t);
}

t ← type;
}

reg rd(reg) {
inputs ← inputs ∪ {reg};

}

reg wr(reg) {
outputs ← outputs ∪ {reg};

}

mem rd(addr) {
outputs ← outputs ∪ {TMP_REG};
emit uop(inputs, outputs, MEM_RD);
outputs ← ∅;
inputs ← {TMP_REG};

}

mem wr(addr) {
outputs ← outputs ∪ {TMP_REG};
emit uop(inputs, outputs, t);
inputs ← {TMP_REG};
t ← MEM_WR;

}

Figure 3: A set of callbacks to split instructions into generic micro-ops.

2: Inst@(0x80482a9/0x7fd352a9, tid=0, USR[IDLE]):\

RET (QSIM_INST_RET)

2: Reg RD 4: 32 bits.

2: Mem RD(0xbfadfa20/0x7f81ba20): 32 bits.

2: Reg RD 4: 32 bits.

2: Reg WR 4: 32 bits.

2: Inst@(0x80482c2/0x7fd352c2, tid=0, USR[IDLE]):\

JMP 0x14 (QSIM_INST_BR)

2: Inst@(0x80482d6/0x7fd352d6, tid=0, USR[IDLE]):\

MOV EAX, 0x0 (QSIM_INST_NULL)

2: Reg WR 0: 32 bits.

Figure 5: Three instructions worth of trace output
from the simple trace writer, including instruction
disassembly, register accesses, and memory accesses.

32%

33%

17%

18%

Reg. Callback

Inst. Callback

Disassembly

Mem. Callback

Figure 6: Execution time of text trace gatherer by
activity. The emulator itself uses less than one per-
cent of total execution time, as the program is lim-
ited by the speed of the C++ formatted I/O primi-
tives.

in this way can be used to drive simulators, but in multi-
threaded simulations represent only a single correct execu-
tion out of many possible ones, and one that would not have
been likely to occur had the processors been timed with an
appropriate simulator instead of all advancing an instruction
at a time in lockstep. Traces of race-free programs annotated
with the details of their synchronization operations do not
necessarily suffer from this limitation [15], and using the
magic instruction interface mentioned in Section 4.4, this
kind of annotation could be added to traces gathered with
QSim.

A binary trace format has also been created, along with
a binary trace reader using the QSim API as mentioned in
Section 1. This provides about 1MIPS per thread of trace
reading or writing speed on our test machine. This is 20
times slower than the QSim emulator itself and ultimately
limited by the speed of disk.

Compared to the popular Pin [11] binary instrumentation
tool, there are some advantages to using QSim to gather
traces.

• Physical addresses are provided for all instructions and
loads/stores.

• Operating system code is emulated and traced as well.

• More details are exposed, including instruction types
and register accesses.

There are several advantages to trace gathering with QSim
over the alternative approach of using the Pin [11] binary
instrumentation tool. While Pin allows gathering traces of
application binaries, it does not allow tracing of operating
systems.

5.3 Interactive Debugging
Debugging the early boot process or debugging software

designed to interact with hardware that has not yet been
implemented requires the use of emulators. The QSim de-
bugger provides an interactive console for any emulator im-
plementing the QSim API. Output from a QDB session is
shown in Figure 7.

QDB has been an essential utility in modifying Linux to
run as a QSim guest, since it allows interactive use of many
of the emulator’s features and manipulation of the guest

Figure 7: QSim Debugger session. A symbol map is
loaded from a file, all running CPUs are advanced
by ten instructions, register contents are examined,
and then a part of guest RAM at the boot CPU’s
program counter is disassembled.

CPUs and register states. It also provides a simple way to
profile guest code in terms of which functions, in both the
OS and user programs, are executed for the most dynamic
instructions. While this statistic can be misleading due to
the variable nature of instruction execution times, few other
options are available to quickly profile operating system code
without modification.

5.4 Visualization
Figure 8 is the output of a program that plots memory ac-

cesses over program execution measured in dynamic instruc-
tions, both instruction and data, using the instruction and
memory operation callbacks provided by QSim. These kinds
of images make concepts such as locality and complexity vis-
ible, both within user code and the operating system. Figure
8 is a plot of memory accesses in a single-threaded program
performing merge sort. The O(n logn) time complexity and
O(n) space complexity of the algorithm are readily appar-
ent, as is the self-similarity caused by its recursivity.

6. RELATED WORK
The QSim front-end shares features with several other

simulation projects. PTLSim [20] and the PTLSim deriva-
tive MARSS [14] both use an instrumented QEMU. Neither
of these simulators exploit parallelism on the host, but both
of them have an interface between front-end and back-end
that could be mapped to a subset of the QSim interface.
FAST [5], also built on QEMU, exploits parallelism on the
host, speculative execution, and FPGA-based hardware ac-
celerators to provide very fast simulation speeds. FAST was
designed with a heavy emphasis on simulation speed and
tight coupling between the front-end, back-end, and FPGA
accelerator, and because of this has a different scope than
QSim.

Coremu [19] is an emulation project that runs the CPUs
of a modified QEMU in parallel with emphasis on perfor-

V
ir
tu
a
l
A
d
d
re
ss

Instruction Count

Reads

Writes

Figure 8: Plot of memory accesses to array and tem-
porary copy area during serial merge sort. Yellow
represents writes and magenta represents reads.

mance. Techniques used to achieve fast parallel execution
on Coremu could be ported to QSim to improve its multi-
threaded performance, overcoming the major shortcoming
of Coremu from a simulation perspective, that it lacks any
way to instrument or control the execution of the emulated
code.

Pin [11] and Shade [6] are binary instrumentation utilities,
and at least Pin has been used as front-end for simulation
[9, 13], but neither provide support for emulating operating
system code. There are other functional simulation products
specifically designed to be used as part of larger simulation
frameworks [12, 3, 2], and there have been successful sim-
ulation infrastructures built using these [10, 1]. What has
not been created until now is a unified instruction set in-
dependent API through which a set of potentially parallel
back-ends can be interfaced with a set of front-ends with
considerably less effort than required by current front-ends.

Some of the aforementioned front-ends, including Coremu,
Simics, Simnow, and Simplescalar are distinct from QSim
in that they provide full system emulation, providing a full
range of hardware, including network and disk devices. While
such devices can be built on top of QSim’s callback inter-
face, none are currently available, limiting QSim’s focus to
machine models that consist solely of processors and RAM.
Despite this limitation, QSim still allows more simulation
fidelity than front-ends based on Pin, Shade, or other user-
mode-only front-ends. Even though it does not emulate the
full set of I/O devices provided by QEMU, operating system
code is still emulated, including filesystem, memory manage-
ment, and the scheduler.

7. PERFORMANCE AND SCALABILITY
Table 2 shows the slowdown for a single-threaded instance

of the QSim emulator running on our test machine with all
callbacks set to empty functions. This is an estimate of the
speed of QSim when it is being used as a simulator front-end
which sets all callbacks. From this we gather that typical
slow-down over native execution of 4-threaded applications
on four CPUs is on the order of 300.

Scaling of QSim with empty callbacks up to four threads
is seen in Figure 9. This highlights one of the limitations of

Program Data Set Description Slowdown* MIPS
swaptions 102400 simulations, 4 swaptions Options pricing simulation from

Parsec benchmark suite.
259x 18.5

mtgl-bfs 214 vertex RMAT graph Multi-Threaded Graph Library
RMAT generation and breadth-
first search.

387x 36.6

ocean-non-contig 258x258 grid Ocean from Splash-II bench-
mark suite.

267x 40.7

*Slowdown over native with all callbacks set to empty functions.

Table 2: Programs used to test QSim performance and scalability, running in four host threads. Average
emulation speed is 24.07 MIPS.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 1.5 2 2.5 3 3.5 4

M
IP

S

Number of Emulator Threads

swaptions
mtgl-bfs

ocean

Figure 9: Performance as QSim scales to multiple
threads, measured using a set of common parallel
benchmarks.

the QSim implementation: atomic memory operations must
wait for all currently running threads to either encounter an
atomic operation or finish running before they can begin,
often causing large delays when synchronization activity is
bursty. This is most pronounced when the number of in-
structions passed to run() is large relative to the typical
distance between atomic memory operations. For the eval-
uation, this argument to run() is always 1000 instructions.

Large numbers of guest threads are also well-supported,
the execution rate tends to be the same no matter how many
QEMU CPUs are instantiated beyond the number of hard-
ware threads provided by the host system, though the per-
cpu execution rate falls roughly linearly. This means that,
on a single-core host, running a single instruction on each
of a thousand guest cores will require the roughly the same
time amount of time as running a thousand instructions on
a single guest core.

8. FUTURE WORK
Future work is primarily concerned with creating fast and

flexible simulators using QSim as a front-end. An imple-
mentation of the QSim API that communicates with the
emulator over a network interface has been created to allow
exploration of parallel and distributed simulators. The cur-
rent implementation is expected to communicate with a set

of nodes in a parallel simulation which uses MPI or a similar
framework. All of the nodes in the simulator would com-
municate out-of-band with Remote QSim through a client-
server interface.

Other future work involves porting QSim to other instruc-
tion sets and using the QSim API for other front-ends. 64-bit
x86 support is nearly complete and a port to ARM using
QEMU’s ARM support has just commenced.

9. CONCLUSIONS
Features of QSim enabling its use as an effective simula-

tion front-end include:

• Enables execution driven simulation of multithreaded
processors.

• Allows parallel execution in both the front-end and
back-end of the simulator.

• Supports hundreds of guest cores, providing capability
to model the next generation of manycore processors.

• Runs operating system as well as user code, providing
insight into systems software.

• Provides an instruction set independent API, allowing
construction of universal simulators.

• Supplies tool for saving and loading state, enabling
checkpointing and pre-fastforwarding.

QSim has demonstrated a way to build front-ends for pro-
cessor simulators for multicore microarchitecture research,
enabling parallel execution-driven simulators. Through thread-
safety in the API and parallel execution in the emulator it-
self, QSim enables parallel simulators. The QSim API addi-
tionally provides a way to combine front-ends and back-ends
without the effort of starting over each time. This has al-
ready enabled the creation of an instruction set independent
processor simulator, which can be either trace or execution
driven, and more are expected in the future.

10. ACKNOWLEDGMENTS
The authors are grateful to Paolo Faraboschi and Daniel

Ortega for their suggestions and guidance in getting QSim
started. This work was supported by the National Science
Foundation under grant CNS855110, Sandia National Lab-
oratories, and HP Laboratories.

11. REFERENCES
[1] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,

and D. Ortega. Cotson: infrastructure for full system
simulation. ACM SIGOPS Operating Systems Review,
43(1):52–61, 2009.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling.
Computer, 35(2):59–67, 2002.

[3] R. Bedichek. Simnow: Fast platform simulation purely
in software. In Hot Chips, volume 16, 2004.

[4] F. Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the USENIX Annual
Technical Conference, FREENIX Track, pages 41–46,
2005.

[5] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart,
D. Johnson, J. Keefe, and H. Angepat.
Fpga-accelerated simulation technologies (fast): Fast,
full-system, cycle-accurate simulators. In Proceedings
of the 40th Annual IEEE/ACM international
Symposium on Microarchitecture, pages 249–261.
IEEE Computer Society, 2007.

[6] B. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling,
volume 22. ACM, 1994.

[7] G. Dabah. distorm64 - the ultimate disassembler
library., 2009.

[8] R. M. Fujimoto. Parallel discrete event simulation.
Commun. ACM, 33(10):30–53, 1990.

[9] A. Jaleel, R. Cohn, C. Luk, and B. Jacob. Cmp$im: A
pin-based on-the-fly multi-core cache simulator. In
Proc. of the The Fourth Annual Workshop on
Modeling, Benchmarking and Simulation (MoBS),
pages 28–36, 2008.

[10] G. Loh, S. Subramaniam, and Y. Xie. Zesto: A
cycle-level simulator for highly detailed
microarchitecture exploration. In Performance
Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on, pages 53–64.
IEEE, 2009.

[11] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200. ACM, 2005.

[12] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. H̊allberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, pages 50–58, 2002.

[13] J. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1–12. IEEE, 2010.

[14] A. Patel, F. Afram, and K. Ghose. Marss-x86: A
qemu-based micro-architectural and systems simulator
for x86 multicore processors. In 1 st International
QEMU Users’ Forum, page 29, 2011.

[15] A. Rico, A. Duran, F. Cabarcas, Y. Etsion,
A. Ramirez, and M. Valero. Trace-driven simulation of
multithreaded applications. In Proceedings of the IEEE
International Symposium on Performance Analysis of

Systems and Software, ISPASS ’11, pages 87–96,
Washington, DC, USA, 2011. IEEE Computer Society.

[16] A. Rodrigues, K. Hemmert, B. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, et al. The structural
simulation toolkit. ACM SIGMETRICS Performance
Evaluation Review, 38(4):37–42, 2011.

[17] J. Shin, D. Huang, B. Petrick, C. Hwang, A. Leon,
and A. Strong. A 40nm 16-core 128-thread sparc R© soc
processor. In Solid State Circuits Conference
(A-SSCC), 2010 IEEE Asian, pages 1–4. IEEE, 2011.

[18] R. Singhal. Inside intel R© next generation nehalem
microarchitecture. In Hot Chips, volume 20.

[19] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, and
B. Zang. Coremu: a scalable and portable parallel
full-system emulator. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel
programming, pages 213–222. Citeseer, 2011.

[20] M. Yourst. Ptlsim: A cycle accurate full system
x86-64 microarchitectural simulator. Performance
Analysis of Systems and Software, IEEE International
Symmposium on, 0:23–34, 2007.

